Synthesis and characterisation of chelating polycarboxylate ligands capable of forming intermolecular, complementary triple hydrogen bonds

(Note: The full text of this document is currently only available in the PDF Version )

Stefan Ulvenlund, Alexandra S. Georgopoulou, D. Michael P. Mingos, Ian Baxter, Simon E. Lawrence, Andrew J. P. White and David J. Williams


Abstract

The reaction between the dianhydride of ethylenedinitrilotetraacetic acid (edta) 1 and aminouracil derivatives was utilised to synthesize bifunctional, chelating ligands capable of co-ordinating to a metal centre via the edta backbone, while simultaneously being able to form complementary intermolecular hydrogen bonds via the uracil moieties. 5-Aminouracil 2, 5-aminoorotic acid 3, 5,6-diaminouracil 4 and 5,6-diamino-2-thiouracil 5 were treated with 1 in dry dmf or dmso to give functionalised dicarboxamide derivatives H2L1–H2L4 in 15–90% yield. The 5,6-diaminouracils 4 and 5 reacted with the dianhydride exclusively via the 5-amino position. The reaction of H2L1–H2L4 with basic metal salts [e.g. KVO3 and Zn(O2CMe)2] in aqueous solutions led to the formation of metal complexes of the anionic ligands L1–L4: K[VO2L1]·5H2O, [Zn(OH2)L1]·4H2O and [Zn(OH2)L3]·5H2O were characterized by single-crystal X-ray crystallography. The solid state structures of these complexes show that the uracil moieties are situated on pendant side-arms. The high degree of rotational freedom of these hydrogen-bonding groups makes this class of metal complex promising in terms of specific binding to water-soluble biomolecules having complementary hydrogen-bonding sites.


References

  1. J.-M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89 CrossRef; A. F. Williams, Pure Appl. Chem., 1996, 68, 1285 CAS; E. C. Constable, Chem. Commun., 1997, 1073 RSC; R. Kramer, J.-M. Lehn and A. Marquis-Rigualt, Proc. Natl. Acad. Sci. USA, 1993, 90, 5394 CAS.
  2. A. D. Burrows, C.-W. Chan, M. M. Chowdhry, J. E. McGrady and D. M. P. Mingos, Chem. Soc. Rev., 1995, 24, 329 RSC; M. M. Chowdhry, D. M. P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun., 1996, 899 RSC; C.-W. Chan, D. M. P. Mingos, A. J. P. White and D. J. Williams, Polyhedron, 1996, 15, 1173 CrossRef CAS; Chem. Commun., 1996, 81 Search PubMed; J. E. McGrady and D. M. P. Mingos, J. Chem. Soc., Perkin Trans. 2, 1995, 2287 Search PubMed; A. D. Burrows, D. M. P. Mingos, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 1996, 3805 RSC.
  3. M. B. Inoue, M. Inoue, I. C. Munoz, M. A. Bruck and Q. Fernando, Inorg. Chim. Acta, 1993, 209, 29 CrossRef CAS; S. J. Franklin and K. N. Raymond, Inorg. Chem., 1994, 33, 5794 CrossRef CAS.
  4. M. S. Konings, W. C. Dow, D. B. Love, K. N. Raymond, S. C. Quay and S. M. Rocklage, Inorg. Chem., 1990, 29, 1488 CrossRef CAS; F. Jasanada and F. Nepveu, Tetrahedron Lett., 1992, 33, 5745 CrossRef CAS; L. Ehnebohm, B. F. Pedersen and J. Klaveness, Acta Chem. Scand., 1993, 47, 965; S. W. A. Bligh, A. H. M. S. Chowdhury, M. McPartlin, I. J. Scowen and R. A. Bulman, Polyhedron, 1995, 14, 567 CrossRef CAS.
  5. D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 3613 RSC.
  6. D. J. Hnatowich, M. W. Layne and R. L. Childs, Int. J. Appl. Radiat. Isot., 1982, 33, 327 Search PubMed; M. W. Brechbiel, O. A. Gansow, R. W. Atcher, J. Schlom, J. Esteban, D. E. Simpson and D. Colcer, Inorg. Chem., 1986, 25, 2772 CrossRef CAS.
  7. A. Houlton, D. M. P. Mingos and D. J. Williams, J. Chem. Soc., Chem. Commun., 1994, 503 RSC.
  8. W. R. Scheidt, R. Countryman and J. L. Hoard, J. Am. Chem. Soc., 1971, 93, 3878 CrossRef.
  9. T. N. Polynova, T. V. Filippova, M. A. Porai-Koshits, V. K. Bel'skii, A. N. Sobolev and L. I. Myachina, Koord. Khim., 1988, 14, 405 Search PubMed; T. F. Sysoeva, Z. A. Starikova, M. V. Leont'eva and N. M. Dyatiova, Zh. Strukt. Khim., 1990, 31, 140 Search PubMed.
  10. SHELXTL PC, version 5.03, Siemens Analytical X-Ray Instruments, Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.