Saddle-shaped dioxo-ruthenium(VI) and -osmium(VI) 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (H2dpp) complexes. Synthesis, spectral characterisation and alkene oxidation by [RuVI(dpp)O2][hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Chun-Jing Liu, Wing-Yiu Yu, Shie-Ming Peng, Thomas C. W. Mak and Chi-Ming Che


Abstract

An improved procedure for the preparation of the saddle-distorted porphyrin 2,3,5,7,8,10,12,13,15,17,18,20-dodecaphenylporphyrin (H2dpp) (yield = 75%) based on the Suzuki cross-coupling reaction between phenylboronic acid PhB(OH)2 and [2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin] has been developed. X-Ray diffraction studies of [MII(dpp)(CO)(py)] (M = Ru 1 or Os 3) showed that 1 and 3 are isostructural, and the porphyrin macrocycles exhibit severe out-of-plane saddle and ruffle distortions. In both 1 and 3 the pyrrole rings are alternately tilted up and down with respect to the least-squares plane of the 25-atom porphyrin core, and the pyrrole carbons experience an average displacement of 0.769 Å from the least-squares plane compared to 0.78 Å for free H2dpp, whereas the Ru and Os atoms are displaced by 0.1006 and 0.0792 Å from the 25-atom porphyrin core respectively. The complex [RuVI(dpp)O2] 2, prepared by m-chloroperoxybenzoic acid oxidation, is an active oxidant for alkene epoxidations. In CH2Cl2 [containing 2%(w/w) pyrazole], styrene, norbornene and cis-stilbene were oxidised selectively to their respective epoxides in excellent yield. Complete stereoretention was observed for the oxidation of cis-stilbene, however oxidation of cis-β-methylstyrene afforded significant amounts of trans-epoxide suggesting that a carboradical mechanism is operative. The crystal structure of the complex [RuIV(dpp)(pz)2] (5), the product of the stoichiometric alkene oxidations, was determined. Magnetic susceptibility measurement (µeff = 3.24 µB) suggests the formulation of RuIV with two unpaired electrons in its electronic ground state. The Ru–N (pz) bond distances are 2.022(13) and 2.083(12) Å. The reactions of 2 with alkenes in CH2Cl2 (with 2% Hpz) follow second-order kinetics: rate = k1[2][alkene]. For norbornene and styrene, the second-order rate constants, k1, in CH2Cl2 at 25.9 °C are (3.79 ± 0.04) × 10–3 and (4.78 ± 0.09) × 10–3 dm3 mol–1 s–1 respectively.


References

  1. (a) J. L. Hoard, in Porphyrins and Metalloporphyrins, ed. K. M. Smith, Elsevier, Amsterdam, 1975, ch. 8 Search PubMed; (b) W. R. Scheidt, in The Porphyrins, ed. D. Dolphin, Academic Press, New York, 1979, vol. 3, ch. 10 Search PubMed; (c) W. R. Scheidt and Y. J. Lee, Struct. Bonding (Berlin), 1987, 64, 1 CAS; (d) K. M. Barkigia, L. Chantranupong, K. M. Smith and J. Fajer, J. Am. Chem. Soc., 1988, 110, 7566 CrossRef CAS; (e) M. Ravikanth and T. K. Chandrashekar, Struct. Bonding (Berlin), 1995, 82, 105 CAS.
  2. J. Deisenhofer and H. Michel, Science, 1989, 245, 1463 CrossRef.
  3. D. E. Tronrud, M. F. Schmid and B. W. Matthews, J. Mol. Biol., 1986, 188, 443 CrossRef CAS.
  4. L. R. Furenlid, M. W. Renner and J. Fajer, J. Am. Chem. Soc., 1990, 112, 8987 CrossRef CAS and refs. therein.
  5. M. W. Grinstaff, M. G. Hill, J. A. Labinger and H. B. Gray, Science, 1994, 264, 1311 CAS; J. A. Labinger, Catal. Lett., 1994, 26, 95 CrossRef CAS.
  6. T. Shingaki, K. Miura, T. Higuchi, M. Hirobe and T. Nagano, Chem. Commun., 1997, 861 RSC; Z. Gross and S. Ini, J. Org. Chem., 1997, 62, 5514 CrossRef CAS; E. Galardon, P. Le Maux and G. Simonneaux, Chem. Commun., 1997, 927 RSC.
  7. D. R. Coulson, Inorg. Synth., 1972, 13, 121.
  8. A. D. Alder, J. Org. Chem., 1967, 32, 476 CrossRef CAS; P. Rothemund and A. R. Menotti, J. Am. Chem. Soc., 1948, 70, 1808 CrossRef CAS.
  9. P. Bhyrappa and V. Krishnan, Inorg. Chem., 1991, 30, 239 CrossRef CAS.
  10. TEXSAN-TEXRAY, Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1985; SHELXL 93, G. M. Sheldrick, University of Göttingen, 1993; NRCC-SDP-VAX E. J. Cabe, Y. Le Page, J. P. Charland, F. L. Lee and P. S. White, J. Appl. Crystallogr., 1989, 22, 384 Search PubMed.
  11. X. Zhou, Z. Y. Zhou, T. C. W. Mak and K. S. Chan, J. Chem. Soc., Perkin Trans. 1, 1994, 2519 RSC.
  12. C. J. Medforth and K. M. Smith, Tetrahedron Lett., 1990, 31, 5583 CrossRef CAS.
  13. C. J. Medforth, M. O. Senge, K. M. Smith, L. D. Sparks and J. A. Shelnutt, J. Am. Chem. Soc., 1992, 114, 9859 CrossRef CAS.
  14. K. M. Barkigia, M. W. Renner, L. R. Furenlid, C. J. Medforth, K. M. Smith and J. Fajer, J. Am. Chem. Soc., 1993, 115, 3627 CrossRef CAS.
  15. J. T. Groves and K.-H. Ahn, Inorg. Chem., 1987, 26, 3831 CrossRef CAS.
  16. C. J. Medforth, M. D. Berber, K. M. Smith and J. A. Shelnutt, Tetrahedron Lett., 1990, 31, 3719 CrossRef CAS.
  17. J. J. Bonnet, S. S. Eaton, G. R. Eaton, R. H. Holm and J. A. Ibers, J. Am. Chem. Soc., 1973, 95, 2141 CrossRef CAS.
  18. T. Takeuchi, H. B. Gray and W. A. Goddard, III, J. Am. Chem. Soc., 1994, 116, 9730 CrossRef CAS.
  19. (a) W. H. Leung and C. M. Che, J. Am. Chem. Soc., 1989, 111, 8812 CrossRef CAS; (b) J. T. Groves and R. Quinn, Inorg. Chem., 1984, 23, 3844 CrossRef CAS; (c) J. T. Groves and R. Quinn, J. Am. Chem. Soc., 1985, 107, 5790 CrossRef CAS.
  20. J. T. Groves, J. Chem. Educ., 1985, 62, 928 CrossRef CAS; J. T. Groves, Y. Hau and D. V. van Engen, J. Chem. Soc., Chem. Commun., 1990, 436 RSC.
  21. A. J. Castellino and T. C. Bruice, J. Am. Chem. Soc., 1988, 110, 158 CrossRef; J. T. Groves, K. H. Ahn and R. Quinn, J. Am. Chem. Soc., 1988, 110, 4217 CrossRef CAS.
  22. J. S. Huang, C. M. Che, Z. Y. Li and C. K. Poon, Inorg. Chem., 1992, 31, 1315 CrossRef; S. M. Au, W. H. Fung, M. C. Cheng, S. M. Peng and C. M. Che, Chem. Commun., 1997, 1655 RSC.
  23. C. M. Che, W. K. Cheng, W. H. Leung and T. C. W. Mak, J. Chem. Soc., Chem. Commun., 1987, 418 RSC.
  24. C. Ho, W. H. Leung and C. M. Che, J. Chem. Soc., Dalton Trans., 1991, 2933 RSC.
  25. H. Fujii, J. Am. Chem. Soc., 1993, 115, 4641 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.