Self-assembling iron and manganese metal–germanium–selenide frameworks: [NMe4]2MGe4Se10, where M = Fe or Mn

(Note: The full text of this document is currently only available in the PDF Version )

Homayoun Ahari, Armando Garcia, Scott Kirkby, Geoffrey A. Ozin, David Young and Alan J. Lough


Abstract

The hydrothermal synthesis mixture Ge–Se–(TMA)OH–H2O (TMA+ = NMe4+) yielded crystals of the material (TMA)4Ge4Se10. A single-crystal X-ray diffraction structure showed the presence of adamantanoid Ge4Se104– clusters and TMA+ cations. The TMA+ template-mediated aqueous synthesis of (TMA)2MGe4Se10 (M = Mn or Fe) from Ge4Se104– and M2+ building-blocks is described. Rietveld powder X-ray diffraction full profile structure refinements of (TMA)2MGe4Se10 established that these novel metal–germanium–selenide frameworks are isostructural with the analogous metal–germanium–sulfides, (TMA)2MGe4S10. The selenide materials have a zinc blende-type of open-framework structure. Charge-balance of the anionic open-framework [MGe4Se10]2– is maintained by two TMA+ template cations that reside within the cavity spaces. Trends in the tetragonal unit cell dimensions and metal–chalcogenide bond lengths of (TMA)2MGe4X10 (X = S or Se) are those expected based upon increases in metal and chalcogenide radii on passing from S–II to Se–II and FeII to MnII.


References

  1. C. N. R. Rao and J. Gopalakrishnan, New Directions in Solid State Chemistry, Cambridge University Press, Cambridge, 1986 Search PubMed.
  2. R. Gunshor and A. V. Nurmikko, Mater. Res. Bull., 1995, 20, 15 CAS.
  3. H. Ahari, R. L. Bedard, C. L. Bowes, T. Jiang, A. Lough, G. A. Ozin, S. Petrov and D. Young, Adv. Mater., 1995, 7, 375 CrossRef CAS.
  4. H. Ahari, R. L. Bedard, A. Lough, S. Petrov, G. A. Ozin and D. Young, Adv. Mater., 1995, 7, 370 CrossRef CAS; H. Ahari, Ö. Dag, R. L. Bedard, S. Petrov and G. A. Ozin, J. Phys. Chem., 1998, 102, 2356 Search PubMed.
  5. O. M. Yaghi, Z. Sun, D. A. Richardson and T. L. Groy, J. Am. Chem. Soc., 1994, 116, 807 CrossRef CAS.
  6. O. M. Yaghi, D. A. Richardson, G. Li, C. E. Davis and T. L. Groy, Mater. Res. Soc. Symp. Proc., 1995, 371, 15 CAS.
  7. O. Achak, J. Y. Pivan, M. Maunaye, D. Louër and M. Louër, J. Alloys Comp., 1995, 219, 111 CrossRef CAS.
  8. L. Bowes, A. Lough, A. Malek, G. A. Ozin, S. Petrov and D. Young, Chem. Ber., 1996, 129, 283 CAS.
  9. C. Larson and R. B. Von Dreele, Los Alamos Laboratory Report No. LA-UR-86-748, 1987.
  10. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
  11. CERIUS2.0®, Simulation Tools User's Reference, Biosym/Molecular Simulations, San Diego, CA, 1997 Search PubMed.
  12. G. M. Sheldrick, SHELXA-90, program for absorption correction, University of Göttingen, 1990.
  13. G. M. Sheldrick, SHELXTL/PC V5.0, Siemens Analytical X-Ray Instruments, Madison, WI, 1993.
  14. S. J. Kirkby, Ph.D. Thesis, Spectroscopy and Crystallography of Metal Germanium Chalcogenide Openframework Materials and Precursors, University of Toronto, 1996 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.