Homoleptic yttrium and lanthanide complexes of aminotroponiminates and aminotroponates: experimental and theoretical studies

(Note: The full text of this document is currently only available in the PDF Version )

Stefanie Dehnen, Markus R. Bürgstein and Peter W. Roesky


Abstract

Density functional theory (DFT) calculations were performed for the homoleptic aminotroponiminate complexes [Ln{C7H5(NPri)2}3] (Ln = Y or Sm) in order to get structural and energetic information about the possible isomers. The calculations predict a propeller-shaped chiral isomer of D3 symmetry as lowest in energy. Two less stable isomers turned out to be stationary points of higher order. One is likely to be close to a structure acting as intermediate in the mechanism of rapid racemisation observed by NMR studies. Based on these results experimental and DFT computational studies of homoleptic lanthanide complexes with the new ligand system aminotroponate C7H5(NPri)O were carried out. This related but asymmetric ligand results in a slower isomerisation and thus detection of the concerned species: 1H NMR experiments showed an equilibrium of several [Y{C7H5(NPri)O}3] isomers in solution, in agreement with the computational results.


References

  1. F. T. Edelmann, Angew. Chem., 1995, 107, 2647 CrossRef; Angew. Chem., Int. Ed. Engl., 1995, 34, 2466 Search PubMed.
  2. D. Drees and J. Magull, Z. Anorg. Allg. Chem., 1994, 620, 814 CrossRef.
  3. F. T. Edelmann, Top. Curr. Chem., 1996, 179, 113 CAS.
  4. F. G. N. Cloke, H. C. de Lemos and A. A. Sameh, J. Chem. Soc., Chem. Commun., 1986, 1344 RSC; F. G. N. Cloke, Chem. Soc. Rev., 1993, 17 RSC; H. Görls, B. Neumüller, A. Scholz and J. Scholz, Angew. Chem., 1995, 107, 732 CrossRef; Angew. Chem., Int. Ed. Engl., 1995, 34, 673 Search PubMed.
  5. R. Duchateau, T. Tuinstra, E. A. C. Brussee, A. Meetsma, P. T. van Duijnen and J. H. Teuben, Organometallics, 1997, 16, 3511 CrossRef CAS.
  6. R. Duchateau, C. T. van Wee, A. Meetsma, P. T. van Duijnen and J. H. Teuben, Organometallics, 1996, 15, 2279 CrossRef CAS; R. Duchateau, C. T. van Wee and J. H. Teuben, Organometallics, 1996, 15, 2291 CrossRef CAS.
  7. P. W. Roesky, Chem. Ber., 1997, 130, 859 CrossRef CAS.
  8. H. V. R. Dias, W. Jin and Z. Wang, Inorg. Chem., 1996, 35, 6074 CrossRef CAS.
  9. M. R. Bürgstein, H. Berberich and P. W. Roesky, Organometallics, 1998, 17, 1452 CrossRef.
  10. R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, TURBOMOLE, Chem. Phys. Lett., 1989, 162, 165 CrossRef CAS.
  11. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346 CrossRef CAS.
  12. K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652 CrossRef CAS.
  13. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS; S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS; J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  14. K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chim. Acta, 1997, 97, 119 CrossRef CAS.
  15. D. L. Kepert, Prog. Inorg. Chem., 1977, 23, 1.
  16. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751 CrossRef.
  17. H. Friebolin, Basic One and Two Dimensional NMR Spectroscopy, VCH, Weinheim, 1992 Search PubMed.
  18. T. J. Anderson, M. A. Neumann and J. A. Melson, Inorg. Chem., 1974, 13, 158 CrossRef CAS.
  19. S. S. Eaton, J. R. Hutchinson, R. H. Holm and E. L. Muetterties, J. Am. Chem. Soc., 1972, 94, 6411 CrossRef CAS; S. S. Eaton, G. R. Eaton, R. H. Holm and E. L. Muetterties, J. Am. Chem. Soc., 1973, 95, 1116 CrossRef CAS.
  20. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571 CrossRef.
  21. D. Andrae, U. Häuser, M. Dolg, H. Stoll and H. Preuss, Theor. Chim. Acta, 1990, 77, 123 CAS.
  22. M. Dolg, H. Stoll, A. Savin and H. Preuss, Theor. Chim. Acta, 1989, 75, 173 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.