Co-ordination chemistry of 6-(2-hydroxyphenyl)pyridine-2-carboxylic acid: a terdentate ligand with a mixed phenolate/pyridyl/carboxylate donor set[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Samantha M. Couchman, John C. Jeffery, Peter Thornton and Michael D. Ward


Abstract

The new ligand 6-(2-hydroxyphenyl)pyridine-2-carboxylic acid (H2L) having a terdentate phenolate–pyridyl–carboxylate (O,N,O) donor set has been found to co-ordinate to transition-metal and lanthanide(III) ions as a dianionic terdentate chelate. The complexes K[MIIIL2] (M = Cr or Fe) are both octahedral with a trans-N4O2 donor set, and according to X-ray analysis have the K+ ion associated with the complex anion via interactions with phenolate and carboxylate oxygen atoms of the ligands. The iron(III) complex is high spin according to EPR and UV/VIS spectroscopy, and is structurally similar to iron(III) complexes of natural siderophores such as desferriferrithiocin. Two dinuclear copper(II) complexes were crystallographically characterised: [Cu2L2(MeOH)2] has a planar {Cu2L2} core with two phenolate ligands bridging the copper(II) centres, and an axial MeOH ligand on each Cu atom, one directed to either side of the {Cu2L2} core; in [Cu2L2(MeOH)(H2O)] in contrast the axial solvent molecules, one H2O and one MeOH, are both on the same face of the {Cu2L2} core which induces a substantial ‘bowing’ of the core to minimise steric interference between them. The terbium(III) complex K[TbL2(H2O)2]·2H2O was also prepared, and has eight-co-ordination; there is an extensive hydrogen-bonding network involving the K+ ions and water molecules. Luminescence spectroscopic studies in MeOH and MeOD gave a value of 4.9 for the number of co-ordinated solvent molecules (q), consistent with an additional contribution to quenching from hydrogen-bonded solvent molecules, and/or partial dissociation of the L2– moieties.


References

  1. D. A. Bardwell, D. Black, J. C. Jeffery, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1993, 2321 RSC; D. A. Bardwell, J. C. Jeffery, E. Schatz, E. E. M. Tilley and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 825 RSC; D. A. Bardwell, J. C. Jeffery and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 3071 RSC; A. M. W. Cargill Thompson, D. A. Bardwell, J. C. Jeffery, L. H. Rees and M. D. Ward, J. Chem. Soc., Dalton Trans., 1997, 721 RSC; A. M. W. Cargill Thompson, S. R. Batten, J. C. Jeffery, L. H. Rees and M. D. Ward, Aust. J. Chem., 1997, 50, 109 CrossRef CAS.
  2. L. Que, jun. and A. E. True, Prog. Inorg. Chem., 1990, 38, 97.
  3. L. Que, jun., Coord. Chem. Rev., 1983, 50, 73 CrossRef.
  4. M. R. McDevitt, A. W. Addison, E. Sinn and L. K. Thompson, Inorg. Chem., 1990, 29, 3425 CrossRef CAS.
  5. L. Casella, M. Gullotti, A. Pintar, L. Messori, A. Rockenbauer and M. Györ, Inorg. Chem., 1987, 26, 1031 CrossRef CAS.
  6. H. U. Naegeli and H. Zähnder, Helv. Chim. Acta, 1980, 63, 1400 CrossRef CAS; F. E. Hahn, T. J. McMurry, A. Hugi and K. N. Raymond, J. Am. Chem. Soc., 1990, 112, 1854 CrossRef CAS.
  7. K. Langemann, D. Heineke, S. Rupprecht and K. N. Raymond, Inorg. Chem., 1996, 35, 5663 CrossRef CAS.
  8. A. P. de Silva, H. Q. N. Gunaratne and T. E. Rice, Angew. Chem., Int. Ed. Engl., 1996, 35, 2116 CrossRef CAS; P. A. Brayshaw, J.-C. G. Bünzli, P. Froidevaux, J. M. HarrowWeld, Y. Kim and A. N. Sobolev, Inorg. Chem., 1995, 34, 2068 CrossRef CAS; J. B. Lamture, Z. H. Zhou, A. S. Kumar and T. G. Wensel, Inorg. Chem., 1995, 34, 864 CrossRef CAS; M. Latva, H. Takalo, K. Simberg and J. Kankare, J. Chem. Soc., Perkin Trans. 2, 1995, 995 RSC.
  9. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10 CrossRef CAS.
  10. D. A. Bardwell, J. C. Jeffery, P. L. Jones, J. A. McCleverty, E. Psillakis, Z. Reeves and M. D. Ward, J. Chem. Soc., Dalton Trans., 1997, 2079 RSC; N. Armaroli, V. Balzani, F. Barigelletti, M. D. Ward and J. A. McCleverty, Chem. Phys. Lett., 1997, 276, 435 CrossRef CAS.
  11. B. M. Holligan, J. C. Jeffery, M. K. Norgett, E. Schatz and M. D. Ward, J. Chem. Soc., Dalton Trans., 1992, 3345 RSC.
  12. M. A. LaVey and P. Thornton, J. Chem. Soc., Dalton Trans., 1982, 313 RSC.
  13. E. J. Corey, A. L. Borror and T. Foglia, J. Org. Chem., 1965, 30, 288 CAS.
  14. T. Sakamoto, S. Kaneda, S. Nishimura and H. Yamanaka, Chem. Pharm. Bull., 1985, 33, 565 CAS; H. Vorbruggen and K. Krolikiewicz, Synthesis, 1983, 316 CrossRef.
  15. SADABS, G. M. Sheldrick, University of Göttingen, 1996.
  16. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  17. J. C. Jeffery, C. S. G. Moore, E. Psillakis, M. D. Ward and P. Thornton, Polyhedron, 1995, 14, 509 CrossRef CAS.
  18. B. P. Gaber, V. Miskowski and T. G. Spiro, J. Am. Chem. Soc., 1974, 96, 6868 CrossRef CAS.
  19. W. T. Oosterhuis, Struct. Bonding (Berlin), 1974, 20, 59 CAS.
  20. J. P. Maher, P. H. Rieger, P. Thornton and M. D. Ward, J. Chem. Soc., Dalton Trans., 1992, 3353 RSC.
  21. O. Kahn, Angew. Chem., Int. Ed. Engl., 1985, 24, 834 CrossRef; M. Kato and Y. Muto, Coord. Chem. Rev., 1988, 92, 45 CrossRef CAS.
  22. W. D. Horrocks and D. R. Sudnick, Acc. Chem. Res., 1981, 14, 384 CrossRef CAS; N. Sabbatini, M. Guardigli and J.-M. Lehn, Coord. Chem. Rev., 1993, 123, 201 CrossRef CAS.
  23. D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 3613 RSC.
  24. S. Aime, M. Botta, D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 17 RSC.
  25. R. D. Chapman, R. T. Loda, R. W. Riehl and R. W. Schwartz, Inorg. Chem., 1984, 23, 1652 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.