Copper(I) chelated by 2,9-dimethyl-1,10-phenanthroline and bridged by 4,4′-bipyridine or trans-1,2-bis(pyridin-4-yl)ethene to give discrete dinuclear and polymeric cations

(Note: The full text of this document is currently only available in the PDF Version )

Alexander J. Blake, Stuart J. Hill, Peter Hubberstey and Wan-Sheung Li


Abstract

Treatment of [Cu(MeCN)4][BF4] with 2,9-dimethyl-1,10-phenanthroline (dmp) and either pyrazine (pyz), 4,4′-bipyridine (4,4′-bipy) or trans-1,2-bis(pyridin-4-yl)ethene (bpe) gave, depending on conditions, the copper(I) species [{Cu(dmp)(NCMe)}2(µ-diimine)]2+, {[Cu(dmp)(µ-diimine)]n}n+ (diimine = 4,4′-bipy or bpe) or [Cu(dmp)2]BF4·xsolv (x = 0.5, solv = CH2Cl2; x = 1, solv = C7H8). The discrete dinuclear cation [{Cu(dmp)(NCMe)}2(µ-4,4′-bipy)]2+ comprises two distorted tetrahedral copper(I) centres (Cu[hair space][hair space]· · ·[hair space][hair space]Cu 11.23 Å), each ligated by a bidentate dmp ligand (mean Cu–N 2.059 Å), an acetonitrile molecule (Cu–N 1.943 Å), and bridged by a 4,4′-bipyridine molecule (Cu–N 2.070 Å). The polymeric species {[Cu(dmp)(µ-diimine)]n}n+ both comprise 1-D polymeric zig-zag chains, based on distorted tetrahedral copper(I) co-ordination geometries, each copper atom being ligated by the dmp ligand and two pyridine N-atoms [diimine = 4,4′-bipy: Cu[hair space][hair space]· · ·[hair space][hair space]Cu 11.11, mean Cu–N (dmp) 2.073, mean Cu–N (py) 2.011 Å; diimine = bpe: mean Cu[hair space][hair space]· · ·[hair space][hair space]Cu 13.375, mean Cu–N (dmp) 2.061, mean Cu–N (py) 1.996 Å]. π–π Stacking interactions between dmp molecules in the 4,4′-bipy bridged polymer leads to the formation of large elliptical channels which host two chains of alternating tetrafluoroborate anions and acetonitrile solvent molecules. The mononuclear species [Cu(dmp)2]BF4·xsolv (x = 0.5, solv = CH2Cl2; x = 1 solv = C7H8) are also based on tetrahedral copper(I); that in [Cu(dmp)2]BF4·0.5CH2Cl2 is highly distorted with three short (2.006–2.074 Å) and one longer Cu–N distance (2.139 Å), that in [Cu(dmp)2]BF4·C7H8 is much more regular with four similar Cu–N distances (2.022–2.025 Å).


References

  1. R. H. Holm, P. Kennepohl and E. I. Soloman, Chem. Rev., 1996, 96, 2239 CrossRef CAS; E. I. Soloman, U. M. Sundaram and T. E. Machonkin, Chem. Rev., 1996, 96, 2563 CrossRef CAS; B. A. Averill, Chem. Rev., 1996, 96, 2951 CrossRef CAS; K. D. Karlin and Z. Tyeklár, Bioinorganic Chemistry of Copper, Chapman and Hall, New York, 1993 Search PubMed.
  2. R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins and J. Liu, Supramolecular Architecture, ACS, Washington, DC, 1992, ch. 19 Search PubMed; M. Fujita, Y. J. Kwon, S. Washizu and K. Ogura, J. Am. Chem. Soc., 1994, 116, 1151 Search PubMed; G. R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989 CrossRef CAS; G. R. Desiraju, Angew. Chem., 1995, 107, 2541 CrossRef CAS; Angew. Chem., Int. Ed. Engl., 1995, 35, 2311 Search PubMed.
  3. (a) A. S. Batsanov, M. J. Begley, P. Hubberstey and J. Stroud, J. Chem. Soc., Dalton Trans., 1996, 1947 RSC; (b) P. Hubberstey and C. E. Russell, J. Chem. Soc., Chem. Commun., 1995, 959 RSC; (c) M. J. Begley, P. Hubberstey, C. E. Russell and P. H. Walton, J. Chem. Soc., Dalton Trans., 1994, 2483 RSC.
  4. (a) M. J. Begley, P. Hubberstey and J. Stroud, J. Chem. Soc., Dalton Trans., 1996, 2323 RSC; (b) A. J. Blake, N. R. Champness, S. S. M. Chung, W. S. Li and M. Schröder, Chem. Commun., 1997, 1005 RSC.
  5. M. Munakata, M. Maekawa, S. Kitagawa, S. Matsuyama and H. Masuda, Inorg. Chem., 1989, 28, 4300 CrossRef CAS.
  6. T. Otieno, S. J. Rettig, R. C. Thompson and J. Trotter, Can. J. Chem., 1989, 67, 1964 CAS.
  7. T. Otieno, S. J. Rettig, R. C. Thompson and J. Trotter, Can. J. Chem., 1990, 68, 1901 CAS.
  8. S. Kitagawa, M. Munakata and T. Tanimura, Chem. Lett., 1991, 623 CAS.
  9. S. Kitagawa, M. Munakata and T. Tanimura, Inorg. Chem., 1992, 31, 1714 CrossRef CAS.
  10. M. M. Turnbull, G. Pon and R. D. Willett, Polyhedron, 1991, 10, 1835 CrossRef CAS.
  11. S. Kitagawa, S. Kawata, M. Kondo, Y. Nozaka and M. Munakata, Bull. Chem. Soc. Jpn., 1993, 66, 3387 CAS.
  12. T. Otieno, S. J. Rettig, R. C. Thompson and J. Trotter, Inorg. Chem., 1993, 32, 1607 CrossRef CAS.
  13. L. R. McGillivary, S. Subramanian and M. J. Zawarotko, J. Chem. Soc., Chem. Commun., 1994, 1325 RSC.
  14. O. M. Yaghi and G. Li, Angew. Chem., Int. Ed. Engl., 1995, 34, 207 CrossRef CAS; J. C. Guillermo and C. J. Diz, J. Coord. Chem., 1987, 16, 245 CrossRef.
  15. R. Hämäläinen, U. Turpeinen, M. Ahlgrén and T. Raikas, Cryst. Struct. Commun., 1979, 8, 75 Search PubMed.
  16. R. Hämäläinen, U. Turpeinen, M. Ahlgrén and T. Raikas, Finn. Chem. Lett., 1978, 199 Search PubMed.
  17. G. Dessy and V. Fares, Cryst. Struct. Commun., 1979, 8, 507 Search PubMed.
  18. J. F. Dobson, B. E. Green, P. C. Healy, C. H. L. Kennard, C. Pakawatchai and A. H. White, Aust. J. Chem., 1984, 37, 649 CAS.
  19. M. Munakata, S. Kitagawa, A. Asahara and H. Masuda, Bull. Chem. Soc. Jpn., 1987, 60, 1927 CAS; P. C. Healy, L. M. Engelhardt, V. A. Patrick and A. H. White, J. Chem. Soc., Dalton Trans., 1985, 2541 RSC.
  20. J. W. Godden, S. Turley, D. C. Teller, E. T. Adman, M. Y. Liu, W. J. Payne and J. Legall, Science, 1991, 253, 438 CAS.
  21. G. J. Kubas, Inorg. Synth., 1979, 19, 90 CAS.
  22. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, Pergamon, Oxford, 3rd edn., 1988 Search PubMed.
  23. J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105 CrossRef CAS.
  24. A. Altomare, G. Cascarano, G. Giacovazzo, A. Guagliarda, M. C. Burla, G. Polidori and M. Camilli, J. Appl. Crystallogr., 1994, 27, 435 CrossRef.
  25. G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.
  26. D. J. Watkin, C. K. Prout, R. J. Carruthers and P. Betteridge, CRYSTALS, Issue 10, Chemical Crystallography Laboratory, Oxford, 1996.
  27. D. J. Watkin, C. K. Prout and L. J. Pearce, CAMERON, Chemical Crystallography Laboratory, Oxford, 1996.
Click here to see how this site uses Cookies. View our privacy policy here.