Effect of surfactant and pH on the redox potential of microperoxidase 11 in aqueous micellar solutions

(Note: The full text of this document is currently only available in the PDF Version )

Diganta K. Das and Okhil K. Medhi


Abstract

The redox potential of heme undecapeptide from cytochrome c (microperoxidase 11) in aqueous sodium dodecyl sulfate (sds), hexadecyltrimethylammonium bromide, and Triton X-100 surfactant micelles varied from +2 mV at pH 3.0 to –222 mV at pH 9.0. The potentials at pH 7.0 were –114, –122, and –166 mV vs. the normal hydrogen electrode in the three surfactants. The nature of the axial ligands, spin state of iron, apolar nature of the local heme environment, and pH influence the potential in the micelles. Binding of histidine (HisH) of the peptide chain gave a negative shift of –60 mV, and deprotonation of co-ordinated HisH to histidinate gave a –100 mV shift of the potential in aqueous sds. At pH 5.0–6.0 the axial ligands to iron are H2O and HisH; deprotonation of co-ordinated H2O gave –65 mV shift of the potential. Interaction of hemin with surfactant gave a positive shift of the potential with respect to that in water. The diffusion coefficient of the undecapeptide (2.4 × 10–7 cm2 s–1) at pH 7.0 in the micelles is an order of magnitude smaller than that in water, indicating solubilisation of heme in surfactant solutions. The potential is strongly dependent on pH and is controlled by the uptake/release of protons at three sites: the unco-ordinated HisH of the peptide chain, the axially co-ordinated H2O and HisH ligands. The pKa values of these redox state-dependent ionisations in the iron(III) state are ca. 4.3, 6.3, and 8.3. The change in potential per unit change of pH (ΔE/ΔpH) was ca. –59 mV, which indicates proton-coupled electron transfer involving one electron and one proton.


References

  1. G. R. Moore and G. W. Pettigrew, Cytochrome c: Evolutionary, Structural and Physiochemical Aspects, Springer, Berlin, Heidelberg, 1990, ch. 7, pp. 309–362 Search PubMed.
  2. R. J. Kassner, J. Am. Chem. Soc., 1973, 95, 2674 CrossRef CAS.
  3. T. Mashiko, C. A. Reed, K. J. Haller, M. E. Kassener and W. R. Scheidt, J. Am. Chem. Soc., 1981, 103, 5758 CrossRef CAS.
  4. P. O'Brien and D. A. Sweigart, Inorg. Chem., 1985, 24, 1405 CrossRef CAS.
  5. R. Quinn, J. Mercer-Smith, J. N. Burnstyn and J. S. Valentine, J. Am. Chem. Soc., 1984, 106, 4136 CrossRef CAS.
  6. G. Smulevich, M. A. Miller, J. Kraut and T. G. Spiro, Biochemistry, 1991, 30, 9546 CrossRef CAS.
  7. A. M. Berghuis, J. G. Guillemette, G. McLendon, F. Sherman, M. Smith and G. D. Brayer, J. Mol. Biol., 1994, 236, 786 CrossRef CAS.
  8. A. M. Berghuis, J. G. Guillemette, M. Smith and G. D. Brayer, J. Mol. Biol., 1994, 235, 1326 CrossRef CAS.
  9. D. B. Goodwin and D. E. McRee, Biochemistry, 1993, 32, 3313 CrossRef.
  10. G. R. Moore, D. E. Harris, F. A. Leitch and G. W. Pettigrew, Biochim. Biophys. Acta, 1984, 764, 331 CrossRef CAS.
  11. G. R. Moore, R. J. P. Williams, J. Peterson, A. J. Thomson and F. S. Mathews, Biochim. Biophys. Acta, 1985, 829, 83 CrossRef CAS.
  12. H. A. Harbury and P. A. Loach, J. Biol. Chem., 1960, 235, 3640 CAS.
  13. H. A. Harbury and P. A. Loach, Proc. Natl. Acad. Sci. USA, 1959, 45, 1344 CAS.
  14. R. Santucci, H. Reinhard and M. Brunori, J. Am. Chem. Soc., 1988, 110, 8536 CrossRef CAS.
  15. N. J. Feder, Histochem Cytochem., 1970, 18, 911 Search PubMed.
  16. J. E. Erman and J. D. Satterlee, Electron Transport and Oxygen Utilisations, ed. C. Ho, Elsevier-North Holland, Amsterdam, 1982, pp. 223–227 Search PubMed.
  17. M. T. Wilson, R. J. Ranson, P. Masiakowski, E. Czarneka and M. Brunori, Eur. J. Biochem., 1977, 97, 193.
  18. K. Kimura, J. Peterson, M. Wilson, D. J. Cookson and R. J. P. Williams, J. Inorg. Biochem., 1981, 15, 11 CrossRef CAS.
  19. S. Mazumdar, O. K. Medhi and S. Mitra, Inorg. Chem., 1991, 30, 700 CrossRef CAS.
  20. J. Simplicio, K. Schewenzer and F. Maenpa, J. Am. Chem. Soc., 1975, 97, 7319 CrossRef CAS.
  21. J. Simplicio, Biochemistry, 1972, 11, 2525 CrossRef CAS; J. Simplicio and K. Schewenzer, Biochemistry, 1973, 12, 1923 CrossRef CAS.
  22. J. H. Fendler and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975, ch. 13, pp. 249 and 250 Search PubMed.
  23. J. F. Rusling, J. Am. Chem. Soc., 1993, 115, 11 891 CrossRef CAS.
  24. J. F. Rusling, N. Hu, H. Zhang, D. Howe, C.-L. Miaw and E. Coulter, Electrochemistry in Colloidal Dispersions, ed. R. A. Mackay and J. Texter, VCH, New York, 1992, pp. 303–318 Search PubMed.
  25. J. R. Kirchoff, E. Deutsch and W. R. Heinman, Anal. Lett., 1989, 22, 1323.
  26. J. R. Kirchoff, W. R. Heinman and E. Deutsch, Inorg. Chem., 1988, 27, 3608 CrossRef.
  27. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Fundamentals and Applications, Wiley, New York, 1980, ch. 12, p. 535 Search PubMed.
  28. J. H. Fendler and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975, ch. 2, p. 20 Search PubMed.
  29. B. Lindman and H. Wennerstrom, Top. Curr. Chem., 1980, 87, 1 CAS.
  30. W. M. Clark, Oxidation Reduction Potentials of Organic Systems, Williams and Wilkins, Baltimore, MD, 1960, pp. 256–263 Search PubMed.
  31. A. M. T. Jehanli, D. A. Stotter and M. T. Wilson, Eur. J. Biochem., 1976, 71, 613 CrossRef CAS.
  32. T. Yoshimura and T. Ozaki, Arch. Biochem. Biophys., 1984, 230, 466 CAS.
  33. D. A. Baldwin, H. M. Marques and J. M. Pratt, J. Inorg. Biochem., 1988, 27, 245 CrossRef CAS.
  34. T. Mincey and T. G. Taylor, J. Am. Chem. Soc., 1979, 101, 765 CrossRef CAS.
  35. J. T. Landrum, K. Hatano, W. R. Scheidt and C. A. Reed, J. Am. Chem. Soc., 1980, 102, 6729 CrossRef CAS.
  36. S. Mazumdar, N. Kannadagulli, O. K. Medhi and S. Mitra, J. Chem. Soc., Dalton Trans., 1989, 103 Search PubMed.
  37. M. S. Farnandez and P. Fromherz, J. Phys. Chem., 1977, 81, 1755 CrossRef.
  38. J. S. de Ropp, V. Thanabal and G. N. LaMar, J. Am. Chem. Soc., 1985, 107, 8268 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.