Insertion of carbon dioxide into a rhodium(III)–hydride bond: a theoretical study[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Yasuo Musashi and Shigeyoshi Sakaki


Abstract

The insertion of CO2 into the RhIII–H bond of the rhodium dihydride complexes cis-[RhH2(PH3)3]+ and cis-[RhH2(PH3)2(H2O)]+ was theoretically investigated by ab initio MO/MP2 and MP4SDQ methods. The transition state (TS) is product-like, in which an η1-formate anion is almost formed. Its geometry is significantly influenced by the ligand trans to CO2; the formate is considerably shifted from a position trans to hydride when the latter is trans to CO2, but only slightly when either PH3 or H2O is trans to CO2. The activation barrier (Ea) and the reaction energy (ΔE[hair space]) were calculated to be 53.8 and –3.3 kcal mol–1, respectively, when the hydride ligand is trans to CO2, 41.7 and –8.0 kcal mol–1 when PH3 is trans to CO2 and 24.0 and –27.0 kcal mol–1 when H2O is trans to CO2, where MP4SDQ values are given and a negative ΔE value indicates that the reaction is exothermic. These results are clearly understood in terms of the trans influence of H (hydride), PH3 and H2O.


References

  1. J.-C. Tsai and K. M. Nicholas, J. Am. Chem. Soc., 1992, 114, 5117 CrossRef CAS.
  2. D. J. Darensbourg, G. Grötsch, P. Wiegreffe and A. L. Rheingold, Inorg. Chem., 1987, 26, 3827 CrossRef CAS.
  3. W. Kaska, S. Nemeh, A. Shirazi and S. Potunik, Organometallics, 1988, 7, 13 CrossRef CAS.
  4. (a) T. Burgemeiser, F. Kastner and W. Leitner, Angew. Chem., Int. Ed. Engl., 1993, 32, 739 CrossRef; (b) F. Hutschka, A. Dedieu and W. Leitner, Angew. Chem., Int. Ed. Engl., 1995, 34, 1742 CrossRef CAS; (c) F. Hutschka, A. Dedieu, M. Eichberger, R. Fornika and W. Leitner, J. Am. Chem. Soc., 1997, 119, 4432 CrossRef CAS.
  5. P. G. Jessop, T. Ikariya and R. Noyori, J. Am. Chem. Soc., 1996, 118, 344 CrossRef CAS.
  6. S. Sakaki and Y. Musashi, Int. J. Quantum Chem., 1996, 57, 481 CrossRef CAS.
  7. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, GAUSSIAN 94, Gaussian Inc., Pittsburg, PA, 1995.
  8. P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270 CrossRef CAS.
  9. S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam, 1984 Search PubMed.
  10. T. H. Dunning and P. J. Hay, in Methods of Electronic Structure Theory, ed. H. F. Schaefer, Plenum, New York, 1977, p. 1 Search PubMed.
  11. M. Couty and M. B. Hall, J. Comput. Chem., 1996, 17, 1359 CrossRef CAS.
  12. T. Clark, J. Chandrasekhar, G. W. Spitznagel and P. v. R. Schleyer, J. Comput. Chem., 1983, 4, 294 CrossRef CAS.
  13. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
  14. (a) S. Sakaki and K. Ohkubo, Inorg. Chem., 1989, 28, 2583 CrossRef CAS; (b) S. Sakaki and Y. Musashi, Inorg. Chem., 1995, 34, 1914 CrossRef CAS; (c) S. Sakaki and Y. Musashi, J. Chem. Soc., Dalton Trans., 1994, 3047 RSC.
  15. K. Fukui, Acc. Chem. Res., 1981, 14, 363 CrossRef CAS.
  16. A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.