Syntheses, crystal structures and magnetic properties of one-, two- and three-dimensional 2,2′-bipyrimidine-containing copper(II) complexes

(Note: The full text of this document is currently only available in the PDF Version )

Giovanni De Munno, Teresa Poerio, Miguel Julve, Francesc Lloret, Juan Faus and Andrea Caneschi


Abstract

Three new copper(II) complexes of formula [Cu(bipym)(H2O)2][NO3]2·H2O 1, [Cu(bipym)(Cr2O7)] 2 and [Cu(bipym)(SO4)]·H2O 3 (bipym = 2,2′-bipyrimidine) have been synthesized and characterized by single-crystal X-ray diffraction. Compound 1 loses water very easily transforming into [Cu(bipym)][NO3]2 1′. The structure of 1 consists of zigzag chains of bipym-bridged copper(II) ions with unco-ordinated nitrate anions and co-ordinated and crystallization water molecules, whereas the structures of 2 and 3 are made up of bipym-bridged copper(II) chains which are connected through bis(monodentate)-dichromate (2) and -sulfate (3) groups to yield sheet-like (2) and three-dimensional (3) polymers. The copper atom in compounds 1–3 exhibits a distorted elongated-octahedral co-ordination. In 1, it is linked to two bis(chelating) bipym groups and two water molecules in cis positions. The equatorial positions of the octahedron are occupied by three bipym-nitrogen atoms and a water-oxygen, while the axial ones are filled by the remaining bipym-nitrogen and the second aqua ligand. The equatorial mean planes of two adjacent copper(II) ions within the chains are mutually perpendicular. In 2, two different bis(chelating) bipym groups alternate regularly within the chain. The four nitrogen atoms of one of them build the equatorial positions of two neighbouring octahedra and the two remaining equatorial sites around each metal atom are filled by an oxygen atom of the dichromate group and a nitrogen atom of the second bipym. The two trans axial positions are occupied by another nitrogen atom of the second bipym and an oxygen atom of the dichromate anion. The two adjacent equatorial copper(II) mean planes through this second bridging bipym in 2 are mutually parallel. Two adjacent crystallographically independent metal atoms alternate regularly within the bipym-bridged copper(II) chain in 3. Their equatorial plane is built by three nitrogen atoms from bipym and one oxygen atom from a sulfate anion, whereas the axial positions are filled by the remaining bipym nitrogen atom and an oxygen atom from another sulfate anion. The equatorial mean planes of adjacent copper(II) ions within the bipym-bridged chain of 3 are mutually perpendicular as in 1. The metal–metal separations across bridging bipym are 5.646(1) Å in 1, 5.486(2) and 5.765(2) Å in 2 and 5.648(1) and 5.715(1) Å in 3, values which are close to that through bridging dichromate [5.774(1) Å in 2] but shorter than those through bridging sulfate [6.464(2) and 6.417(2) Å in 3]. Variable-temperature magnetic susceptibility measurements reveal that bridging bipym is able to mediate relatively strong (1′ and 2) and weak (1 and 3) antiferromagnetic couplings. The magnitude of the exchange coupling in this series is analyzed and discussed in the light of the complexes structural patterns.


References

  1. G. De Munno and M. Julve, Acta Crystallogr., Sect. C, 1994, 50, 1034 CrossRef.
  2. (a) I. Castro, J. Sletten, L. K. Glærum, F. Lloret, J. Faus and M. Julve, J. Chem. Soc., Dalton Trans., 1994, 2777 RSC; (b) I. Castro, J. Sletten, L. K. Glærum, J. Cano, F. Lloret, J. Faus and M. Julve, J. Chem. Soc., Dalton Trans., 1995, 3207 RSC; (c) G. De Munno, M. Julve, F. Lloret, J. Cano and A. Caneschi, Inorg. Chem., 1995, 34, 2048 CrossRef CAS.
  3. G. De Munno, M. Julve, F. Lloret and A. Derory, J. Chem. Soc., Dalton Trans., 1993, 1179 RSC.
  4. (a) G. Brewer and E. Sinn, Inorg. Chem., 1985, 24, 4580 CrossRef CAS; (b) G. De Munno, M. Julve, F. Lloret, J. Faus and A. Caneschi, J. Chem. Soc., Dalton Trans., 1994, 1175 RSC; (c) G. De Munno, M. Julve, F. Lloret, T. Poerio and G. Viau, New. J. Chem., in the press Search PubMed.
  5. J. A. Real, J. Zarembowitch, O. Kahn and X. Solans, Inorg. Chem., 1987, 26, 2939 CrossRef; E. Andrés, G. De Munno, M. Julve, J. A. Real and F. Lloret, J. Chem. Soc., Dalton Trans., 1993, 2169 RSC; J. Sletten, H. Daraghmeh, F. Lloret and M. Julve, Inorg. Chim. Acta, in the press Search PubMed.
  6. G. De Munno, R. Ruiz, F. Lloret, J. Faus, R. Sessoli and M. Julve, Inorg. Chem., 1995, 34, 408 CrossRef CAS; D. M. Hong, Y. Y. Chu and H. H. Wei, Polyhedron, 1996, 15, 447 CrossRef CAS.
  7. (a) L. W. Morgan, K. V. Goodwin, W. T. Pennington and J. D. Petersen, Inorg. Chem., 1992, 31, 1103 CrossRef CAS; (b) G. De Munno, M. Julve, M. Verdaguer and G. Bruno, Inorg. Chem., 1993, 32, 2215 CrossRef CAS.
  8. G. De Munno, M. Julve, J. A. Real, F. Lloret and R. Scopelliti, Inorg. Chim. Acta, 1996, 250, 81 CrossRef CAS.
  9. D. M. Hong, H. H. Wei, L. L. Gan, G. H. Lee and Y. Wang, Polyhedron, 15, 2335 Search PubMed.
  10. G. De Munno, T. Poerio, M. Julve, F. Lloret, G. Viau and A. Caneschi, J. Chem. Soc., Dalton Trans., 1997, 601 RSC.
  11. A. Earnshaw, Introduction to Magnetochemistry, Academic Press, London, New York, 1968 Search PubMed.
  12. N. Walker and D. D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 CrossRef.
  13. SHELXTL PLUS, Version 4.21/V, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1990.
  14. M. Nardelli, Comput. Chem., 1983, 7, 95 CrossRef CAS.
  15. P. Martín-Zarza, P. Gili, F. V. Rodríguez-Romero and C. Ruiz-Pérez, Polyhedron, 1995, 14, 2907 CrossRef CAS and refs. therein.
  16. J. Mestres, M. Durán, P. Martín-Zarza, E. Medina de la Rosa and P. Gili, Inorg. Chem., 1993, 32, 4708 CrossRef CAS and refs. therein.
  17. O. Kahn and B. Briat, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 268 RSC.
  18. J. J. Girerd, M. F. Charlot and O. Kahn, Mol. Phys., 1977, 34, 1063 CAS; O. Kahn and M. F. Charlot, Nouv. J. Chim., 1980, 4, 567 Search PubMed.
  19. (a) M. Julve, G. De Munno, G. Bruno and M. Verdaguer, Inorg. Chem., 1988, 27, 3160 CrossRef CAS; (b) M. Julve, M. Verdaguer, G. De Munno, J. A. Real and G. Bruno, Inorg. Chem., 1993, 32, 795 CrossRef CAS.
  20. O. Kahn, Molecular Magnetism, VCH, New York, 1993, p. 263 Search PubMed.
  21. W. E. Estes, D. P. Gavel, W. E. Hatfield and D. J. Hodgson, Inorg. Chem., 1978, 17, 1415 CrossRef CAS.
  22. J. Cano, G. De Munno, J. L. Sanz, R. Ruiz, J. Faus, F. Lloret, M. Julve and A. Caneschi, J. Chem. Soc., Dalton Trans., 1997, 1915 RSC.
  23. M. L. Kirk, W. E. Hatfield, M. S. Lah, D. Kessissoglou, V. L. Pecoraro, L. W. Morgan and J. D. Petersen, J. Appl. Phys., 1991, 69, 6013 CrossRef CAS.
  24. G. De Munno, M. Julve, F. Lloret, J. Faus, M. Verdaguer and A. Caneschi, Angew. Chem., Int. Ed. Engl., 1993, 32, 1046 CrossRef; Inorg. Chem., 1995, 34, 157 Search PubMed.
  25. G. De Munno, M. Julve, F. Nicoló, F. Lloret, J. Faus, R. Ruiz and E. Sinn, Angew. Chem., Int. Ed. Engl., 1993, 32, 613 CrossRef.
  26. G. De Munno, J. A. Real, M. Julve and M. C. Muñoz, Inorg. Chim. Acta, 1993, 211, 227 CrossRef CAS.
  27. S. Decurtins, H. W. Schmalle, P. Schneuwly, L. M. Zheng, J. Ensling and A. Hauser, Inorg. Chem., 34, 5501 Search PubMed.
  28. I. Castro, M. Julve, G. De Munno, G. Bruno, J. A. Real, F. Lloret and J. Faus, J. Chem. Soc., Dalton Trans., 1992, 1739 RSC.
  29. G. De Munno, G. Bruno, M. Julve and M. Romeo, Acta Crystallogr., Sect. C, 1990, 46, 1828 CrossRef.
  30. R. R. Ruminski, Inorg. Chim. Acta, 1985, 103, 159 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.