Density functional study of hydrogen exchange and methane elimination from bis(cyclopentadienyl)tungsten methyl hydrides and their ansa-bridged analogues

(Note: The full text of this document is currently only available in the PDF Version )

Jennifer C. Green and Christian N. Jardine


Abstract

Theoretical calculations have been carried out using density functional theory on the hydrogen exchange and methane elimination reactions of [W(η-C5H5)2(Me)H] and [W{(η-C5H4)2CH2}(Me)H]. In both cases the hydrogen exchange proceeds along a similar reaction path on which lies a η1-H σ complex. The midpoint of the exchange reaction is a η2-H,H σ complex. For [W(η-C5H5)2(Me)H] a transition state is proposed which is calculated to lie 81 kJ mol–1 above the ground state. This compares with an experimental free energy of activation of 106 kJ mol–1 for [W(η-C5H5)2(Me)D]. Elimination of methane is calculated to have an overall reaction energy of 19.6 kJ mol–1 for [W(η-C5H5)2(Me)H] and 78.3 kJ mol–1 for [W{(η-C5H4)2CH2}(Me)H]. The activation energy for elimination from the two compounds is estimated as around 80 and 85 kJ mol–1 respectively. The principal reason for the relative stability of the [W(η-C5H5)2] product is its relaxation to a parallel ring triplet state which is calculated to lie 67.9 kJ mol–1 below the lowest excited singlet state. For [W{(η-C5H4)2CH2}] the singlet and triplet states are separated by 13.3 kJ mol–1 with the rings inclined at an angle constrained by the ansa bridge.


References

  1. P. Grebnik, A. J. Downs, M. L. H. Green and R. N. Perutz, J. Chem. Soc., Chem. Commun., 1979, 742 RSC.
  2. J. Chetwynd-Talbot, P. Grebnik and R. N. Perutz, Inorg. Chem., 1982, 21, 3647 CrossRef CAS.
  3. C. Gianotti and M. L. H. Green, J. Chem. Soc., Chem. Commun., 1972, 1114 Search PubMed.
  4. N. J. Cooper, M. L. H. Green and R. Mahtab, J. Chem. Soc., Dalton Trans., 1979, 1557 RSC.
  5. M. Berry, K. Elmitt and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1979, 1950 RSC.
  6. M. Berry, N. J. Cooper, M. L. H. Green and S. J. Simpson, J. Chem. Soc., Dalton Trans., 1980, 29 RSC.
  7. R. M. Bullock, C. E. L. Headford, S. E. Kegley and J. R. Norton, J. Am. Chem. Soc., 1985, 107, 727 CrossRef CAS.
  8. R. M. Bullock, C. E. L. Headford, K. M. Hennessy, S. E. Kegley and J. R. Norton, J. Am. Chem. Soc., 1989, 111, 3897 CrossRef CAS.
  9. G. Parkin and J. E. Bercaw, Organometallics, 1989, 8, 1172 CrossRef CAS.
  10. L. Labella, A. Chernega and M. L. H. Green, J. Chem. Soc., Dalton Trans., 1995, 395 RSC.
  11. A. Chernega, J. Cook, M. L. H. Green, L. Labella, S. J. Simpson, J. Souter and A. H. H. Stephens, J. Chem. Soc., Dalton Trans., 1977, 3225 Search PubMed.
  12. H. Munakata, American Chemical Society, New Orleans, 1996.
  13. H. H. Brintzinger, L. L. Lohr and K. L. Tang Wong, J. Am. Chem. Soc., 1975, 97, 5146 CrossRef CAS.
  14. R. A. Periana and R. G. Bergmann, J. Am. Chem. Soc., 1986, 108, 7332, 7346 CrossRef CAS.
  15. J. M. Buchanan, J. M. Stryker and R. G. Bergmann, J. Am. Chem. Soc., 1986, 108, 1537 CrossRef CAS.
  16. R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1993, 32, 789 CrossRef.
  17. C. Hall and R. N. Perutz, Chem. Rev., 1996, 96, 3125 CrossRef CAS.
  18. ADF (version 2.0.1), G. te Velde and E. J. Baerends, Department of Theoretical Chemistry, Vrije Universiteit, 1996.
  19. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  20. A. D. Becke, Phys. Rev. A, 1988, 38, 2398 CrossRef.
  21. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  22. J. P. Perdew, Phys. Rev. B, 1986, 34, 7046.
  23. J. Souter, D.Phil. Thesis, University of Oxford, 1996.
Click here to see how this site uses Cookies. View our privacy policy here.