The energetics and mechanism of fluxionality of 2,2′∶6′,2″-terpyridine derivatives when acting as bidentate ligands in transition-metal complexes. A detailed dynamic NMR study

(Note: The full text of this document is currently only available in the PDF Version )

Andrew Gelling, Keith G. Orrell, Anthony G. Osborne and Vladimir Šik


Abstract

Syntheses are reported for the following transition metal complexes of derivatives of 2,2′∶6′,2″-terpyridine, [ReBr(CO)3L] (L = mcpt, mcpmt, mmtt or bmtt), [PtIMe3(mcpt)], [Pd(C6F5)2(mcpt)] and [Pt(C6F5)2(mcpt)] where mcpt = 4-methyl-4′-(4-chlorophenyl)-2,2′∶6′,2″-terpyridine, mcpmt = 4-methyl-4′-(4-chlorophenyl)-4″-methyl-2,2′∶6′,2″-terpyridine, mmtt = 4-methyl-4′-methylthio-2,2′∶6′,2″-terpyridine and bmtt = 4-tert-butyl-4′-methylthio-2,2′∶6′,2″-terpyridine. In organic solvents (CD2Cl2, CDCl2·CDCl2) they exist as bidentate chelate complexes which undergo double 1,4-metallotropic shifts (‘tick-tock’ twists). These shifts have been monitored by variable temperature one- and two-dimensional NMR methods and activation energy data obtained. These energy data are very metal-dependent, magnitudes of ΔG[hair space] (298.15 K) being in the range 66–101 kJ mol–1 and showing the trend PtII [double greater-than, compressed] PdII ≈ ReI > PtIV. The nature of the ligand does not greatly influence the ligand fluxionality but does affect the relative populations of the pairs of metal complexes found in solution (when L = mcpt, mmtt and bmtt). Above-ambient temperature 2-D-exchange spectroscopy (EXSY) NMR experiments provide firm evidence for the fluxions occurring by an associative mechanism, involving five-co-ordinate intermediates for palladium(II) and platinum(II) complexes, and seven-co-ordinate intermediates for platinum(IV) and, by analogy, rhenium(I) complexes.


References

  1. E. W. Abel, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain and V. Šik, J. Chem. Soc., Chem. Commun., 1992, 303 RSC.
  2. E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, V. Šik, M. B. Hursthouse and M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 291 RSC.
  3. E. W. Abel, V. S. Dimitrov, N. J. Long, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Šik, M. B. Hursthouse and M. A. Mazid, J. Chem. Soc., Dalton Trans., 1993, 597 RSC.
  4. E. W. Abel, K. G. Orrell, A. G. Osborne, H. M. Pain and V. Šik, J. Chem. Soc., Dalton Trans., 1994, 111 RSC.
  5. E. W. Abel, K. G. Orrell, A. G. Osborne, H. M. Pain, V. Šik, M. B. Hursthouse and K. M. A. Malik, J. Chem. Soc., Dalton Trans., 1994, 3441 RSC.
  6. E. R. Civitello, P. S. Dragovich, T. B. Karpishin, S. G. Novick, G. Bierach, J. F. O'Connell and T. F. Westmoreland, Inorg. Chem., 1993, 32, 237 CrossRef CAS.
  7. S. Ramdeehul, L. Barloy, J. A. Osborn, A. de Cian and J. Fischer, Organometallics, 1996, 15, 5442 CrossRef CAS.
  8. T. Daniel, N. Suzuki, K. Tanaka and A. Nakamura, J. Organomet. Chem., 1995, 505, 109 CrossRef CAS.
  9. E. Rotondo, G. Giordano and D. Minniti, J. Chem. Soc., Dalton Trans., 1996, 253 RSC.
  10. E. W. Abel, A. Gelling, K. G. Orrell, A. G. Osborne and V. Šik, Chem. Commun., 1996, 2329 RSC.
  11. (a) H. D. Kaesz, R. Bau, D. Hendrickson and J. M. Smith, J. Am. Chem. Soc., 1967, 89, 2844 CrossRef CAS; (b) M. M. Bhatti, Ph.D. Thesis, University of Exeter, 1980.
  12. D. H. Goldsworthy, Ph.D. Thesis, University of Exeter, 1980.
  13. G. Lopez and G. Garcia, Inorg. Chim. Acta, 1981, 52, 87 CrossRef CAS; G. Lopez, G. Garcia, N. Cutillas and J. Ruiz, J. Organomet. Chem., 1983, 241, 269 CrossRef CAS.
  14. D. Minniti, Inorg. Chem., 1994, 33, 2631 CrossRef CAS.
  15. W. K. Fife, J. Org. Chem., 1983, 48, 1375 CrossRef CAS.
  16. F. H. Case and T. J. Kasper, J. Am. Chem. Soc., 1956, 78, 5842 CrossRef CAS.
  17. P. H. Ko, T. Y. Chen, J. Zhu, K. F. Cheng, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton Trans., 1995, 2215 RSC.
  18. F. Krohnke and K. F. Gross, Chem. Ber., 1959, 92, 22 CAS.
  19. F. Krohnke, Synthesis, 1976, 1 CrossRef.
  20. E. C. Constable and A. M. W. Cargill-Thompson, New J. Chem., 1996, 20, 65 Search PubMed and refs. therein.
  21. K. T. Potts, D. A. Usifer, A. Guadalupe and H. D. Abruna, J. Am. Chem. Soc., 1987, 109, 3961 CrossRef CAS; K. T. Potts, P. Ralli, G. Theodoridis and P. Winslow, Org. Synth., 1986, 64, 189 CAS.
  22. D. F. Shriver, Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969 Search PubMed.
  23. D. A. Kleier and G. Binsch, DNMR3 Program 165, Quantum Chemistry Program Exchange, Indiana University, IN, 1970.
  24. E. W. Abel, T. P. J. Coston, K. G. Orrell, V. Šik and D. Stephenson, J. Magn. Reson., 1986, 70, 34 CAS.
  25. V. Šik, Ph.D. Thesis, University of Exeter, 1979.
  26. C. A. Bessel, R. F. See, D. L. Jameson, M. R. Churchill and K. J. Takeuchi, J. Chem. Soc., Dalton Trans., 1992, 3223 RSC.
  27. E. W. Abel, K. A. Hylands, M. D. Olsen, K. G. Orrell, A. G. Osborne, V. Šik and G. N. Ward, J. Chem. Soc., Dalton Trans., 1994, 1079 RSC.
  28. P. J. Heard and C. Jones, J. Chem. Soc., Dalton Trans., 1997, 1083 RSC.
  29. R. Romeo, A. Grassi and L. Monsù Scolaro, Inorg. Chem., 1992, 31, 4383 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.