Orotate complexes of rhodium(I) and iridium(I): effect of coligand, counter ion, and solvent of crystallisation on association via complementary hydrogen bonding

(Note: The full text of this document is currently only available in the PDF Version )

Stuart L. James, D. Michael P. Mingos, Xingling Xu, Andrew J. P. White and David J. Williams


Abstract

The new complexes [NEt3H][M(HL)(cod)] (M = Rh 1 or Ir 2; H3L = 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid, orotic acid; cod = cycloocta-1,5-diene) have been prepared by the reaction between [M2Cl2(cod)2] and orotic acid in dichloromethane in the presence of Ag2O and NEt3. They crystallise as dichloromethane adducts 1·CH2Cl2 and 2·CH2Cl2 from dichloromethane–hexane solutions. These isomorphous structures contain doubly hydrogen-bonded dimers, with additional hydrogen bonding to NEt3H+ cations and bridging CH2Cl2 molecules to form tapes. The use of NBun4OH instead of NEt3 gave the related complex [NBun4][Rh(HL)(cod)] 1′ which has an innocent cation not capable of forming strong hydrogen bonds and in contrast to 1 exists as discrete doubly hydrogen-bonded dimers. Complex 1′ cocrystallises with 2,6-diaminopyridine (dap) via complementary triple hydrogen bonds to give [NBun4][Rh(HL)(cod)]·dap·CH2Cl2 3. Complex 3 exhibits an extended sheet structure of associated [2 + 2] units, with layers of NBun4 cations separating the sheets. These structural data together with those reported previously for platinum orotate complexes suggest that the steric requirements of the other ligands co-ordinated to the metal are important in influencing their hydrogen-bonding abilities. The solvent of crystallisation, the hydrogen-bonding propensity of the coligand and the nature of the counter ion also determine the type of association in the solid state.


References

  1. J. C. MacDonald and G. M. Whitesides, Chem. Rev., 1994, 94, 2383 CrossRef CAS; C. B. Aakeroy and K. R. Seddon, Chem. Soc. Rev., 1993, 397 RSC; G. R. Desiraju, Chem. Commun., 1997, 1475 RSC.
  2. A. D. Burrows, C.-W. Chan, M. M. Chowdhry, J. E. McGrady and D. M. P. Mingos, Chem. Soc. Rev., 1995, 331 RSC; A. D. Burrows, D. M. P. Mingos, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 1996, 3805 RSC; M. M. Chowdhry, D. M. P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun., 1996, 899 RSC; A. D. Burrows, D. M. P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun., 1996, 97 RSC; C.-W. Chan, D. M. P. Mingos, A. J. P. White and D. J. Williams, Chem. Commun., 1996, 81 RSC; Polyhedron, 1996, 15, 1753 Search PubMed; J. D. Carr, L. Lambert, D. E. Hibbs, M. B. Hursthouse, K. M. A. Malik and J. H. R. Tucker, Chem. Commun., 1997, 1649 Search PubMed; N. Armaroli, F. Barigelletti, G. Calogero, L. Flamigni, C. M. White and M. D. Ward, Chem. Commun., 1997, 2181 RSC; C. Price, M. R. J. Elsegood, W. Clegg, N. H. Rees and A. Houlton, Angew. Chem., Int. Ed. Engl., 1997, 36, 1762 RSC; E. C. Constable and R.-A. Fallahpour, J. Chem. Soc., Dalton Trans., 1996, 2389 CrossRef CAS; P. J. Davies, N. Veldman, D. M. Grove, A. L. Spek, B. T. G. Lutz and G. van Koten, Angew. Chem., Int. Ed. Engl., 1996, 35, 1959 RSC; S. L. James, G. Verspui, A. L. Spek and G. van Koten, Chem. Commun., 1996, 1309 CrossRef CAS.
  3. A. Karipides and B. Thomas, Acta Crystallogr., Sect. C, 1986, 42, 1705 CrossRef.
  4. (a) A. D. Burrows, D. M. P. Mingos, A. J. P. White and D. J. Williams, J. Chem. Soc., Dalton Trans., 1996, 149 RSC; (b) T. Solin, K. Matsumoto and K. Fuwa, Bull. Chem. Soc. Jpn., 1981, 54, 3731 CAS.
  5. M. C. Etter, Acc. Chem. Res., 1990, 23, 120 CrossRef CAS.
  6. J. E. McGrady and D. M. P. Mingos, J. Chem. Soc., Perkin Trans. 2, 1996, 355 RSC.
  7. J. L. Herde, J. C. Lambert and C. V. Senoff, Inorg. Synth., 1974, 15, 18 CAS; A. van der En and A. L. Onderdelinden, Inorg. Synth., 1991, 28, 90.
  8. SHELXTL PC, version 5.03, Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.