cis- and trans-nitrosyltetraammineruthenium(II). Spectral and electrochemical properties and reactivity

(Note: The full text of this document is currently only available in the PDF Version )

Maria G. Gomes, Celso U. Davanzo, Sebastião C. Silva, Luiz G. F. Lopes, Paulo S. Santos and Douglas W. Franco


Abstract

A synthetic route was developed for the preparation of trans-[Ru(NH3)4(NO)X]n+, where X = isonicotinamide (isn), pyrazine (pyz) or sulfite, and cis-[Ru(NH3)4(NO)(NO2)]2+. The complexes have been characterized by elemental analysis, UV/VIS, infrared, 1H NMR and ESR spectroscopies, molar conductance measurements and cyclic voltammetry. All showed ν(NO) in the range characteristic of metal-co-ordinated NO+ and do not exhibit any ESR signal, consistent with the formulation of RuII–NO+. The equilibrium constants Keq for the reaction trans-[Ru(NH3)4(NO)X]3+ + 2OH ⇌ trans-[Ru(NH3)4(NO2)X]+ + H2O are 2.5 × 108 and 6 × 108 dm6 mol–2 for X = isn or pyz. Cyclic voltammograms of the complexes in aqueous solution exhibited reversible one-electron waveforms in the potential range –0.13 to –0.38 V vs. SCE, which were assigned to the [Ru(NH3)4(NO)X]n+ → [Ru(NH3)4(NO)X](n–1)+ process. Nitric oxide and trans-[Ru(NH3)4(H2O)X]2+ are the final products of the reaction between EuII and trans-[Ru(NH3)4(NO)X]3+, L = isn or pyz. Ab initio molecular orbital calculations performed for trans-[Ru(NH3)4(NO)(pyz)]3+ and trans-[Ru(NH3)4(NO)(pyz)]2+, and the products of the trans-[Ru(NH3)4(NO)(pyz)]3+ one-electron electrochemical or chemical reduction, strongly suggest the added electron is localized mainly on the nitrosyl ligand. A correlation was observed between ν(NO) and E½ for the reversible reduction wave. These results indicate that the nitric oxide reduction is facilitated by strong π-acceptor ligands trans to the NO. Nitric oxide and trans-[Ru(NH3)4(H2O)X]3+ were formed when solutions containing trans-[Ru(NH3)4(NO)X]3+ were irradiated in the range 310–370 nm.


References

  1. (a) R. Eisenberg and C. D. Meyer, Acc. Chem. Res., 1975, 8, 26 CrossRef CAS; (b) M. H. Thiemens and W. C. Trogler, Science, 1991, 251, 932 CrossRef CAS; (c) ACS Symp. Ser., 1995, 587 Search PubMed; (d) G. B. Ritcher-Addo and P. Legzdins, Metal Nitrosyls, Oxford University Press, New York, 1992 Search PubMed.
  2. E. R. S. Winter, J. Catal., 1971, 22, 158 CrossRef CAS; F. Bottomley, Acc. Chem. Res., 1978, 11, 158 CrossRef CAS; Reactions of Coordinated Ligands, ed. P. S. Braterman, Plenum, New York, 1989, vol. 2 Search PubMed; Methods in Nitric Oxide Research, eds. M. Feelisch and J. S. Stamler, Wiley, Chichester, 1996 Search PubMed.
  3. D. E. Koshland, jun., Science, 1992, 258, 1861; P. C. Ford, D. A. Wink and D. M. Stanbury, FEBS Lett., 1993, 326, 1 CrossRef CAS; D. A. Wink and P. C. Ford, Methods Enzymol., 1995, 7, 14 CrossRef CAS; R. Butler and D. L. H. Williams, Chem. Soc. Rev., 1993, 233 RSC; D. R. Arnelle and J. S. Stamler, Arch. Biochem. Biophys., 1995, 318, 279 CrossRef CAS; D. S. Bohle and C. H. Hung, J. Am. Chem. Soc., 1995, 117, 9584 CrossRef CAS.
  4. M. Fontecave and J. L. Pierre, Bull. Soc. Chim. Fr., 1994, 131, 620 CAS.
  5. M. J. Clarke and J. B. Gaul, Struct. Bonding (Berlin), 1993, 81, 144; P. J. Sadler, Adv. Inorg. Chem., 1991, 36, 1 CrossRef CAS and refs. therein; K. D. Karlin and Z. Tyeklar(Editors), Bionorganic Chemistry of Copper, Chapman and Hall, New York, 1993 Search PubMed; P. Legzdins, S. J. Rettig and S. F. Sayers, J. Am. Chem. Soc., 1994, 116, 12 105 Search PubMed and refs. therein; N. A. Davies, M. T. Wilson, E. Slade, S. P. Fricker, B. A. Murrer, N. A. Powell and G. R. Henderson, Chem. Commun., 1997, 47 Search PubMed.
  6. M. J. Clarke, J. Am. Chem. Soc., 1978, 100, 5068 CrossRef CAS.
  7. E. A. M. F. Dahmen, Electroanalysis: Theory and Application in Aqueous and Non Aqueous Media and Automated Chemical Control, Elsevier, London, 1986 Search PubMed.
  8. S. E. Mazzetto, E. Tfouni and D. W. Franco, Inorg. Chem., 1996, 35, 3509 CrossRef CAS.
  9. S. Pell and J. N. Armor, Inorg. Chem., 1973, 12, 873 CrossRef CAS.
  10. S. S. Isied and H. Taube, Inorg. Chem., 1974, 13, 1545 CrossRef CAS.
  11. G. M. Brown, J. E. Sutton and H. Taube, J. Am. Chem. Soc., 1978, 100, 2767 CrossRef CAS.
  12. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  13. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  14. GAUSSIAN 94, Revision B.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheesman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. N. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, O. C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  15. N. Godbout, D. R. Saluhub, J. Andzelm and E. Wimmer, Can. J. Chem., 1992, 70, 560 CAS.
  16. HYPERCHEM 4, Hypercube, Inc., Toronto, CA, 1994.
  17. J. H. Enemark and R. D. Feltham, Coord. Chem. Rev., 1974, 13, 339 CrossRef CAS.
  18. (a) J. N. Armor and M. Z. Hoffman, Inorg. Chem., 1975, 14, 444 CrossRef CAS; (b) R. W. Callahan, G. M. Brown and T. J. Meyer, J. Am. Chem. Soc., 1975, 97, 894 CrossRef CAS; (c) R. W. Callahan and T. J. Meyer, Inorg. Chem., 1977, 16, 574 CrossRef CAS; (d) D. W. Pipes and T. J. Meyer, Inorg. Chem., 1984, 23, 2466 CrossRef CAS; (e) I. A. Bagatin and H. E. Toma, Spectrosc. Lett., 1996, 29, 1409 CAS.
  19. L. G. F. Lopes, E. E. Castellano, J. Z.-Schepctor, C. U. Davanzo, M. J. Clarke, A. Wieraszko and D. W. Franco, Inorg. Chem., submitted Search PubMed.
  20. R. Benedix and A. Vogler, Inorg. Chim. Acta, 1993, 204, 189 CrossRef CAS.
  21. P. T. Manoharan and H. B. Gray, J. Am. Chem. Soc., 1965, 87, 3340 CrossRef CAS.
  22. A. F. Schreiner, P. J. Hauser, S. W. Lin, E. A. Hopcus, D. J. Hamm and J. D. Gunter, Inorg. Chem., 1972, 11, 880 CrossRef CAS.
  23. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th edn., Wiley, New York, 1986 Search PubMed.
  24. S. C. Silva, A. B. P. Lever and D. W. Franco, unpublished work.
  25. J. W. Palmer and F. Basolo, J. Inorg. Nucl. Chem., 1960, 15, 279 CrossRef CAS.
  26. J. Mastone and J. N. Armor, J. Inorg. Nucl. Chem., 1975, 37, 473 CrossRef CAS.
  27. C. G. Kuehn and S. S. Isied, Prog. Inorg. Chem., 1980, 27, 153 CAS and refs. therein.
  28. G. J. Kubas and P. J. Vergamini, Inorg. Chem., 1981, 20, 2667 CrossRef CAS.
  29. R. C. Elder and M. Trkula, Inorg. Chem., 1977, 16, 1048 CrossRef CAS.
  30. C. A. Reed and W. R. Roper, J. Chem. Soc., Dalton Trans., 1972, 1243 RSC.
  31. F. Bottomley, Acc. Chem. Res., 1978, 11, 158 CrossRef CAS.
  32. A. Albert and P. E. Serjeant, The Determination of Ionization Constants, Chapman and Hall, Edinburgh, 1971 Search PubMed.
  33. J. B. Godwin and T. J. Meyer, Inorg. Chem., 1971, 10, 2150 CrossRef CAS.
  34. S. S. S. Borges, C. U. Davanzo, E. E. Castellano, J. Z.-Schepctor, S. C. Silva and D. W. Franco, Inorg. Chem., submitted Search PubMed.
  35. F. Bedioui, S. Trevin and J. Devynck, J. Electroanal. Chem. Interfacial Electrochem., 1994, 377, 295 CrossRef CAS; V. Hampl, C. L. Walters and S. L. Archer, Methods in Nitric Oxide Research, eds. M. Feelisch and J. S. Stamler, Wiley, Chichester, 1996, ch. 21 Search PubMed.
  36. S. S. S. Borges, M. G. Gomes, L. C. G. Vasconcellos, H. A. S. Silva, R. M. Carlos, S. C. Silva and D. W. Franco, Program and Abstracts of the Eighth Inter-American Photochemical Society Conference, Foz do Iguaçu, 19–24th May, 1996, p. 81 Search PubMed.
  37. W. A. Cramer and D. B. Knaff, in Energy Transduction in Biological Membranes: A textbook of Bioenergetics, ed. Charles R. Cantor, Springer, New York, 1990, p. 334 Search PubMed.
  38. J. A. Rodriguez, A. Souza-Torsoni, D. W. Franco and M. Haun, XXVIa Reunião Anual da Sociedade Brasileira de Bioquímica e Biologia Molecular-SBBQ, Caxambú, 3rd–6th May, 1997, S-32 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.