A new type of zinc sulfide cluster: [Zn10S7(py)9(SO4)3]·3H2O

(Note: The full text of this document is currently only available in the PDF Version )

Basem Ali, Ian G. Dance, Don C. Craig and Marcia L. Scudder


Abstract

The cluster [Zn10S7(py)9(SO4)3]·3H2O has been synthesized by reaction of the product of thermolysis of [NMe4]4[Zn10S4(SPh)16] [believed to be Zn10S4(SPh)12] with pyridine containing Na2SO4. The compound was characterised by X-ray crystallography: monoclinic space group P[hair space]21[hair space]/c, a = 11.279(6), b = 23.419(6), c = 27.26(1) Å, β = 107.74(2), Z = 4. This cluster is unprecedented in its architecture, and for its combination of sulfide, sulfate and pyridine ligands. It has pseudo-three-fold symmetry. In the core the ten Zn atoms are arrayed as a central Zn4 tetrahedron on the three-fold axis, crowned with a slightly puckered Zn6 hexagon around the axial Zn atom of the Zn4 tetrahedron. The Zn4 tetrahedron contains µ4-S2–. The axial Zn atom of the Zn4 tetrahedron is connected to the Zn6 hexagon through three µ3-S2– ligands. Another three µ3-S2– ligands connect the base of the Zn4 tetrahedron to the Zn6 hexagon. Each SO42– ion bridges three Zn atoms: two from an edge of the hexagon and one basal Zn atom of the tetrahedron. All Zn atoms have distorted tetrahedral co-ordination, completed by terminal pyridine ligands on all except the axial Zn atom. The crystal supramolecularity is a stacking of the clusters such that three axially directed pyridine ligands (on the basal Zn4 atoms) nestle amongst six equatorially directed pyridine ligands (on the Zn6 hexagon) of an adjacent molecule. Water molecules are hydrogen bonded to SO42– and µ3-S atoms. The Zn–S connectivity in this cluster is different from that in the cubic or hexagonal lattices of ZnS, and from that in known M8S(SR)16, M17S4(SR)28 and M10(SR)10 clusters formed by Group 12 metals.


References

  1. I. G. Dance and K. J. Fisher, Prog. Inorg. Chem., 1994, 41, 637 CAS.
  2. I. G. Dance, A. Choy and M. L. Scudder, J. Am. Chem. Soc., 1984, 106, 6285 CrossRef CAS.
  3. A. Choy, D. C. Craig, I. G. Dance and M. L. Scudder, J. Chem. Soc., Chem. Commun., 1982, 1246 RSC.
  4. I. G. Dance, Aust. J. Chem., 1985, 38, 1745 CAS.
  5. G. S. H. Lee, Ph.D. Thesis, University of New South Wales, 1992.
  6. B. Krebs and G. Henkel, Angew. Chem., Int. Ed. Engl., 1991, 30, 769 CrossRef.
  7. M. D. Nyman, M. J. Hampden-Smith and E. N. Duesler, Inorg. Chem., 1996, 35, 802 CrossRef CAS.
  8. D. Johnstone, J. E. Fergusson and W. T. Robinson, Bull. Chem. Soc. Jpn., 1972, 45, 3721 CAS.
  9. K. S. Hagen, D. W. Stephan and R. H. Holm, Inorg. Chem., 1982, 21, 3928 CrossRef CAS.
  10. J. L. Hencher, M. Khan, F. F. Said and D. G. Tuck, Inorg. Nucl. Chem. Lett., 1981, 17, 287 Search PubMed.
  11. J. J. Vittal, Polyhedron, 1996, 15, 1585 CrossRef CAS.
  12. P. A. W. Dean and J. J. Vittal, Inorg. Chem., 1987, 26, 278 CrossRef CAS.
  13. P. A. W. Dean, J. J. Vittal and N. C. Payne, Inorg. Chem., 1987, 26, 1683 CrossRef CAS.
  14. I. G. Dance, Polyhedron, 1986, 5, 1037 CrossRef CAS.
  15. I. G. Dance, J. Chem. Soc., Chem. Commun., 1980, 818 RSC.
  16. I. G. Dance, J. Am. Chem. Soc., 1980, 102, 3445 CrossRef CAS.
  17. A. H. Robbins, D. E. McRee, M. Williamson, S. A. Collett, N. H. Xuong, W. F. Furey, B. C. Wang and C. D. Stout, J. Mol. Biol., 1991, 221, 1269 CAS.
  18. J. D. Otvos, C. F. Shaw and D. H. Petering, Comments Inorg. Chem., 1989, 9, 1 CAS.
  19. M. J. Stillman and A. J. Zelazowski, Biochem. J., 1989, 262, 181 CAS.
  20. T. Lover, W. Henderson, G. A. Bowmaker, J. M. Seakins and R. P. Cooney, Inorg. Chem., 1997, 36, 3711 CrossRef CAS.
  21. T. Lover, G. A. Bowmaker, W. Henderson and R. P. Cooney, Chem. Commun., 1996, 683 RSC.
  22. T. Lover, W. Henderson, G. A. Bowmaker, J. M. Seakins and R. P. Cooney, Chem. Mater., 1997, 9, 1878 CrossRef CAS.
  23. G. W. Adamson and H. M. M. Shearer, Chem. Commun., 1969, 897 RSC.
  24. G. W. Adamson, N. A. Bell and H. M. M. Shearer, Acta Crystallogr., Sect. B, 1982, 38, 462 CrossRef.
  25. D. Zeng, M. J. Hampden-Smith and E. N. Duesler, Inorg. Chem., 1994, 33, 5376 CrossRef CAS.
  26. L. E. Brus, J. Phys. Chem., 1986, 90, 2555 CrossRef CAS.
  27. A. Henglein, Chem. Rev., 1989, 89, 1861 CrossRef CAS.
  28. Y. Wang and N. Herron, J. Phys. Chem., 1991, 95, 525 CrossRef CAS.
  29. M. L. Steigerwald and L. E. Brus, Annu. Rev. Mater. Sci., 1989, 19, 471 Search PubMed.
  30. A. Henglein, Top. Curr. Chem., 1988, 143, 113 CAS.
  31. M. L. Steigerwald and L. E. Brus, Acc. Chem. Res., 1990, 23, 183 CrossRef CAS.
  32. D. M. Wilhelmy and E. Matijevic, J. Chem. Soc., Faraday Trans. 1, 1984, 563 RSC.
  33. K. Osakada, A. Taniguchi, E. Kubota, S. Dev, K. Tanaka, K. Kubota and T. Yamamoto, Chem. Mater., 1992, 4, 562 CrossRef CAS.
  34. H. C. Youn, S. Baral and J. H. Fendler, J. Phys. Chem., 1988, 92, 6320 CrossRef CAS.
  35. A. R. Kortan, R. Hull, R. L. Opila, M. G. Barwendi, M. L. Steigerwald, P. J. Carroll and L. E. Brus, J. Am. Chem. Soc., 1990, 112, 1327 CrossRef CAS.
  36. X. K. Zhao, S. Baral, R. Rolandi and J. H. Fendler, J. Am. Chem. Soc., 1988, 110, 1012 CrossRef CAS.
  37. S. Baral and J. H. Fendler, J. Am. Chem. Soc., 1989, 111, 1604 CrossRef CAS.
  38. V. Sankaran, J. Yue, R. E. Cohen, R. R. Schrock and R. J. Silbey, Chem. Mater., 1993, 5, 1133 CrossRef CAS.
  39. J. Bucheler, N. Zeug and H. Kisch, Angew. Chem., Int. Ed. Engl., 1982, 21, 783 CrossRef.
  40. J. Muilu and T. A. Pakkanen, Appl. Surf. Sci., 1994, 75, 75 CrossRef CAS.
  41. J. Muilu and T. A. Pakkanen, Surf. Sci., 1996, 364, 439 CrossRef CAS.
  42. W. E. Farneth, N. Herron and Y. Wang, Chem. Mater., 1992, 4, 916 CrossRef CAS.
  43. N. Herron, J. C. Calabrese, W. E. Farneth and Y. Wang, Science, 1993, 259, 1426 CrossRef CAS.
  44. J. de Meulenaer and H. Tompa, Acta Crystallogr., 1965, 19, 1014 CrossRef CAS.
  45. A. D. Rae, RAELS, A Comprehensive Constrained Least Squares Refinement Program, University of New South Wales, 1989.
  46. A. K. Verma, T. B. Rauchfuss and S. R. Wilson, Inorg. Chem., 1995, 34, 3072 CrossRef.
  47. A. Müller, U. Schimanski and H. Bögge, Z. Naturforsch., Teil B, 1985, 40, 1277 Search PubMed.
  48. H. Li, S. Du and X. Wu, Acta Crystallogr., Sect. C, 1994, 50, 498 CrossRef.
  49. J. L. Atwood, G. A. Koutsantonis and C. L. Raston, Nature (London), 1994, 368, 229 CrossRef CAS.
  50. G. S. H. Lee, D. C. Craig, I. N. L. Ma, M. L. Scudder, T. D. Bailey and I. G. Dance, J. Am. Chem. Soc., 1988, 110, 4863 CrossRef CAS.
  51. T. Lover, G. A. Bowmaker, J. M. Seakins and R. P. Cooney, Chem. Mater., 1997, 9, 967 CrossRef CAS.
  52. X. Jin, K. Tang, S. Jia and Y. Tang, Polyhedron, 1996, 15, 2617 CrossRef CAS.
  53. T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz and H. Weller, Science, 1995, 267, 1476 CrossRef CAS.
  54. S. Behrens, M. Bettenhausen, A. C. Deveson, A. Eichhofer and D. Fenske, Angew. Chem., Int. Ed. Engl., 1996, 35, 2215 CrossRef CAS.
  55. I. G. Dance, in preparation.
Click here to see how this site uses Cookies. View our privacy policy here.