Metal complexes of imidazole ligands containing histamine-like donor sets: equilibrium, solution structure and hydrolytic activity[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Ibolya Török, Tamás Gajda, Béla Gyurcsik, Gábor K. Tóth and Antal Péter


Abstract

The equilibrium and structural properties of copper(II) and zinc(II) complexes of N,N[hair space]′-di-L-histidylethane-1,2-diamine (dhen) and those of the strongly related histamine have been characterized by pH-metric and spectroscopic (UV/VIS, CD, EPR and NMR) methods. In both dhen systems a dimeric M2L2 species is dominant near the physiological pH, having bis(histamine-like) 2Nim, 2NH2 co-ordination. The MLH–2 complex, also formed in both systems above pH 10, has different structures with the two metal ions. A hydroxo mixed-ligand complex is formed in the case of zinc(II), while the base-consuming processes are assigned to metal-promoted deprotonation of amide nitrogens in the copper(II) system. Between these two dominant species (pH 7–10) tetrameric complexes are formed in each case (as suggested by the CD, EPR and NMR results), with the participation of imidazole-N1 (pyrrolic) nitrogen in the co-ordination. The catalytic activity of the zinc(II)-containing systems towards the hydrolysis of uridine 2′,3′-cyclic monophosphate as nuclease model has been examined. The zinc(II)–histamine complexes efficiently catalyse the hydrolysis. A kinetic study performed at different pH, concentrations and metal-to-ligand ratios, combined with the equilibrium data, revealed three reaction pathways involving Zn(OH), ZnL and ZnL(OH) complexes as active species, in order of activity ZnL [double less-than, compressed] Zn(OH) < ZnL(OH).


References

  1. D. L. Rabenstein, S. A. Daignault, A. A. Isab, A. P. Arnold and M. M. Shoukry, J. Am. Chem. Soc., 1985, 107, 6435 CrossRef CAS.
  2. C. E. Livera, L. D. Pettit, M. Bataille, B. Perly, H. Kozlowski and B. Radomska, J. Chem. Soc., Dalton Trans., 1987, 661 RSC.
  3. P. G. Daniele, O. Zerbinati, R. Aruga and G. Ostacoli, J. Chem. Soc., Dalton Trans., 1988, 1115 RSC.
  4. M. Wienken, B. Lippert, E. Zangrando and L. Randaccio, Inorg. Chem., 1992, 31, 1985 CrossRef.
  5. R. Pogni, G. D. Lunga and R. Basosi, J. Am. Chem. Soc., 1993, 115, 1546 CrossRef CAS.
  6. B. Gyurcsik, I. Vosekalna and E. Larsen, Acta Chem. Scand., 1997, 51, 49 CAS.
  7. R. P. Bonomo, E. Conte, G. Impellizzeri, G. Pappalardo, R. Purrello and E. Rizzarelli, J. Chem. Soc., Dalton Trans., 1996, 3093 RSC.
  8. T. Gajda, B. Henry and J.-J. Delpuech, J. Chem. Soc., Dalton Trans., 1993, 1301 RSC.
  9. T. Gajda, B. Henry and J.-J. Delpuech, Inorg. Chem., 1995, 34, 2455 CrossRef CAS.
  10. T. Gajda, B. Henry, A. Aubry and J.-J. Delpuech, Inorg. Chem., 1996, 35, 586 CrossRef CAS.
  11. D. Gruenwedel, Inorg. Chem., 1968, 7, 495 CrossRef CAS.
  12. K. J. Oberhausen, R. J. O'Brien, J. F. Richardson and R. M. Buchanan, Inorg. Chim. Acta, 1990, 173, 145 CrossRef CAS.
  13. R. G. Clewly, H. Scebocka-Tilk and R. S. Brown, Inorg. Chim. Acta, 1989, 157, 233 CrossRef CAS.
  14. J. R. Morrow and W. C. Trogler, Inorg. Chem., 1988, 27, 3387 CrossRef CAS.
  15. V. M. Shelton and J. R. Morrow, Inorg. Chem., 1991, 30, 4295 CrossRef CAS.
  16. T. Koike and E. Kimura, J. Am. Chem. Soc., 1991, 113, 8935 CrossRef CAS.
  17. S. Kuusela and H. Lönnberg, J. Phys. Org. Chem., 1992, 5, 803 CrossRef CAS.
  18. S. Kuusela and H. Lönnberg, J. Phys. Org. Chem., 1993, 6, 347 CrossRef CAS.
  19. A. Tsubouchi and T. C. Bruice, J. Am. Chem. Soc., 1995, 117, 7399 CrossRef CAS.
  20. B. K. Takasaki and J. Chin, J. Am. Chem. Soc., 1995, 117, 8582 CrossRef CAS.
  21. E. A. Kesicki, M. A. DeRosch, L. H. Freeman, C. L. Walton, D. F. Harvey and W. C. Trogler, Inorg. Chem., 1993, 32, 5851 CrossRef CAS.
  22. F. Chu, J. Smith, V. M. Lynch and E. V. Anslyn, Inorg. Chem., 1995, 34, 5689 CrossRef CAS.
  23. S. Kuusela, M. Rantanen and H. Lönnberg, J. Chem. Soc., Perkin Trans. 2, 1995, 2269 RSC.
  24. D. Findlay, D. G. Herries, A. P. Mathias, B. R. Rabin and C. A. Ross, Nature (London), 1961, 190, 781 CAS.
  25. N. E. Good, G. D. Winget, W. Winter, T. N. Conolly, S. Izawa and R. M. M. Singh, Biochemistry, 1966, 5, 467 CrossRef CAS.
  26. R. E. Mesmer, C. F. Baes and F. H. Sweeton, J. Phys. Chem., 1970, 74, 1937 CrossRef CAS.
  27. L. Zékány and I. Nagypál, in Computational Methods for the Determination of Formation Constants, ed. D. J. Leggett, Plenum, New York, 1991 Search PubMed.
  28. A. Rockenbauer and L. Korecz, Appl. Magn. Reson., 1996, 10, 29 CrossRef CAS.
  29. P. Daniele, O. Zerbinati and G. Negro, Ann. Chim. (Rome), 1987, 77, 879 Search PubMed.
  30. S. Sjöberg, Pure Appl. Chem., 1997, 69, 1549 CrossRef CAS.
  31. R. Hay and P. Morris, J. Chem. Soc. A, 1971, 1518 RSC.
  32. K. Sun Bai and A. E. Martell, J. Am. Chem. Soc., 1969, 91, 4412 CrossRef CAS.
  33. P. Chaudhuri, I. Karpenstein, M. Winter, M. Lengen, C. Butzlaff, E. Bill, A. X. Trautwein, U. Flörke and H.-J. Haupt, Inorg. Chem., 1993, 32, 888 CrossRef.
  34. G. Peintler, I. Nagypál, A. Jancsó, I. R. Epstein and K. Kustin, J. Phys. Chem., 1997, 101, 8013 Search PubMed.
  35. R. Breslow, S. D. Dong, Y. Webb and R. Xu, J. Am. Chem. Soc., 1996, 118, 6588 CrossRef CAS.
  36. T. Kiss, in Biocoordination chemistry, ed. K. Burger, Ellis Horwood, London, 1990 Search PubMed.
  37. H. Sigel and R. B. Martin, Chem. Soc. Rev., 1994, 83 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.