Stabilization of copper(III) complexes by substituted oxamate ligands

(Note: The full text of this document is currently only available in the PDF Version )

Beatriz Cervera, José L. Sanz, María J. Ibáñez, Gema Vila, Francesc LLoret, Miguel Julve, Rafael Ruiz, Xavier Ottenwaelder, Ally Aukauloo, Sandrine Poussereau, Yves Journaux and M. Carmen Muñoz


Abstract

A new series of monomeric copper(II) complexes of the related substituted oxamate ligands N,N[hair space]′-naphthalene-1,8-diylbis(oxamate) (L2) and N,N[hair space]′-trimethylenebis(oxamate) (L3) have been synthesized. The molecular structures of [NBu4]2[CuL2] and [PPh4]2[CuL3]·2H2O have been determined by single-crystal X-ray analysis. The structure of the previously reported complex [PPh4]2[CuL1], where L1 is the parent o-phenylenebis(oxamate), has been also determined. These are mononuclear four-co-ordinate copper(II) complexes with the metal center in a more or less distorted square-planar environment formed by the two amido nitrogen and two carboxylate oxygen atoms from the two oxamato groups of each tetradentate chelating ligand. The bond lengths at the metal atom are similar for all three complexes, the Cu–N bond distances (1.89–1.93 Å) being shorter than the Cu–O ones (1.93–1.97 Å). The bond angles around the metal are different from one complex to the other. They are closer to 90°, corresponding to the ideal square-planar geometry, for the copper(II)–L2 and –L3 complexes as a result of the alternating 5-6-5-membered chelate ring system afforded by L2 and L3, respectively. The values of the CuIII–CuII redox potential in acetonitrile for this family of complexes range from 0.41 to 0.27 V (vs. saturated calomel electrode, 25 °C and 0.1 mol dm–3 NEt4ClO4 as supporting electrolyte), the redox process being only reversible for the copper(II)–L3 species. The stabilization of the trivalent oxidation state of copper in this complex is attributed to the stronger basicity of the aliphatic amido nitrogens with respect to that of the aromatic amido ones. The trend in formal potential along this series is mainly controlled by the size of the chelate rings around the metal ion.


References

  1. R. Ruiz, C. Surville-Barland, A. Aukauloo, E. Anxolabehere-Mallart, Y. Journaux, J. Cano and M. C. Muñoz, J. Chem. Soc., Dalton Trans., 1997, 745 RSC.
  2. (a) P. J. M. W. L. Birker, J. Chem. Soc., Chem. Commun., 1977, 444 RSC; (b) W. E. Keys, J. B. R. Dunn and T. M. J. Loehr, J. Am. Chem. Soc., 1977, 99, 4527 CrossRef; (c) K. J. Oliver and T. N. Waters, J. Chem. Soc., Chem. Commun., 1982, 1111 RSC; (d) L. L. Diaddario, W. R. Robinson and D. W. Margerum, Inorg. Chem., 1983, 22, 1021 CrossRef CAS; (e) F. C. Anson, T. J. Collins, T. G. Richmond, B. D. Santarsiero, J. E. Toth and B. G. R. T. Treco, J. Am. Chem. Soc., 1987, 109, 2974 CrossRef CAS and refs. therein; (f) B. R. Serr, C. E. L. Headford, C. M. Elliot and O. P. Anderson, Acta Crystallogr., Sect. C, 1990, 46, 500 CrossRef; (g) M. R. Caira, K. R. Koch and C. Sacht, Acta Crystallogr., Sect. C, 1991, 47, 26 CrossRef; (h) T. M. Yao, X. Z. You, C. Li, L. F. Li and Q. C. Yang, Acta Crystallogr., Sect. C, 1994, 50, 67 CrossRef; (i) J. Hanss and H. J. Krüger, Angew. Chem., Int. Ed. Engl., 1996, 35, 2827 CrossRef CAS.
  3. H. O. Stumpf, Y. Pei, O. Kahn, J. Sletten and J. P. Renard, J. Am. Chem. Soc., 1993, 115, 6738 CrossRef CAS.
  4. K. Nonoyama, H. Ojima and M. Nonoyama, Inorg. Chim. Acta, 1976, 20, 127 CrossRef CAS.
  5. G. M. Sheldrick, SHELXS 86, A Program for Crystal Structure Determination, University of Göttingen, 1986; SHELXL 93, Program for the Refinement of Crystal Structures, University of Göttingen, 1993.
  6. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, p. 99 Search PubMed.
  7. C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, TN, 1971.
  8. S. S. Turner, C. Michaut, O. Kahn, L. Ouahab, A. Lecas and E. Amouyal, New J. Chem., 1995, 19, 773 Search PubMed.
  9. A. W. Hamburg and D. W. Margerum, Inorg. Chem., 1983, 22, 3884 CrossRef CAS.
  10. J. Soto, R. Martínez-Máñez, J. Payá, F. LLoret and M. Julve, Transition Met. Chem., 1993, 18, 69 CrossRef CAS.
  11. M. P. Youngblood and D. W. Margerum, Inorg. Chem., 1980, 19, 3068 CrossRef CAS.
  12. (a) D. W. Margerum, K. L. Chellapa, F. P. Bossu and G. L. Burce, J. Am. Chem. Soc., 1975, 97, 6894 CrossRef CAS; (b) F. P. Bossu, K. L. Chellapa and D. W. Margerum, J. Am. Chem. Soc., 1977, 99, 2195 CrossRef CAS.
  13. (a) L. Fabbrizzi, A. Perotti and A. Poggi, J. Chem. Soc., Chem. Commun., 1980, 646 RSC; (b) L. Fabbrizzi and A. Poggi, Inorg. Chem., 1983, 22, 1411 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.