Stereochemistry of nickel(II) complexes with N-glycosylamine ligands from 1,3-diaminopropane and aldopentoses. Correlation between configurational structures and circular dichroism spectra†

(Note: The full text of this document is currently only available in the PDF Version )

Tomoaki Tanase, Yukiko Yasuda, Tomoko Onaka and Shigenobu Yano


Abstract

Reactions of [Ni(tn)3]X2·2H2O (tn = 1,3-diaminopropane, X = Cl or Br) with aldopentoses afforded a series of mononuclear nickel(II) complexes with N-glycosylamine ligands, [Ni(aldose-tn)2]X2 [aldose-tn = 1-(N-aldosyl)amino-3-aminopropane, aldose = D-xylose (D-Xyl) 1, D-lyxose (D-Lyx) 2, D-ribose (D-Rib) 3, or D-arabinose (D-Ara) 4], which were characterized by elemental analysis, electronic absorption and circular dichroism (CD) spectroscopy, and X-ray crystallography. Compound 4b, [Ni(D-Ara-tn)2]Br2·2H2O, was shown by an X-ray analysis to have a C2 symmetrical mononuclear nickel(II) structure ligated by two tridentate N-glycosylamine ligands, 1-amino-3-(N-D-arabinosyl)propane. The two N-glycosylamines are co-ordinated to the metal through the primary amino and N-glycosidic secondary amino groups and the C-2 hydroxy group of the sugar moiety in a meridional mode, resulting in a Λ-C2-helical configuration around the metal centre. The sugar rings adopt an unusual α-1C4 chair conformation and the sugar–chelate ring conformation is δ. The co-ordination behavior of D-ribose was confirmed by an X-ray analysis of an analogous compound, [Ni(D-Rib-men)2]Br2·2CH3OH 5 [D-Rib-men = 1-methylamino-2-(N-D-ribosyl)aminoethane], derived from the reaction of [Ni(men)3]Br2 with D-ribose [men = 1-amino-2-(N-methylamino)ethane]. The D-ribose moiety forms an α-N-glycosidic bond with the primary amino group of men, and adopts an α-4C1 chair form, the sugar–chelate ring conformation being δ. The CD spectra of 1–4 were measured in the region 9000–50 000 cm–1 and clearly indicated the structural features of the complexes; the Cotton effects at around 10 000 cm–1 (the first absorption band of the d–d transitions) reflected the conformation of the sugar chelate or the absolute configuration of the N-glycosidic nitrogen atom, and those at around 40 000–46 000 cm–1 (charge-transfer bands) demonstrated the C2 chiral configuration around the metal centre. These assignments were also confirmed by the CD spectra of known compounds.


References

  1. S. J. Angyal, Chem. Soc. Rev., 1980, 9, 415 RSC.
  2. S. J. Angyal, Adv. Carbohydr. Chem. Biochem., 1989, 47, 1 Search PubMed.
  3. D. M. Whitfield, S. Stojkovski and B. Sarkar, Coord. Chem. Rev., 1993, 122, 171 CrossRef.
  4. S. Yano, Coord. Chem. Rev., 1988, 92, 113 CrossRef CAS.
  5. S. Yano and K. Otsuka, Metal Ions in Biological Systems, Marcel Dekker, New York, 1996, p. 27 Search PubMed.
  6. S. Takizawa, H. Sugita, S. Yano and S. Yoshikawa, J. Am. Chem. Soc., 1980, 102, 7969 CrossRef CAS.
  7. S. Yano, S. Takizawa, H. Sugita, T. Takahashi, T. Tsubomura, H. Shioi and S. Yoshikawa, Carbohydr. Res., 1985, 142, 179 CrossRef CAS.
  8. T. Tsubomura, S. Yano, K. Toriumi, T. Ito and S. Yoshikawa, Polyhedron, 1983, 2, 123 CrossRef CAS.
  9. T. Tsubomura, S. Yano, K. Toriumi, T. Ito and S. Yoshikawa, Bull. Chem. Soc. Jpn., 1984, 57, 1833 CAS.
  10. T. Tsubomura, S. Yano, K. Toriumi, T. Ito and S. Yoshikawa, Inorg. Chem., 1985, 24, 3218 CrossRef CAS.
  11. T. Tsubomura, S. Yano and S. Yoshikawa, Inorg. Chem., 1986, 25, 392 CrossRef CAS.
  12. S. Yano, T. Sakai, K. Toriumi, T. Ito and S. Yoshikawa, Inorg. Chem., 1985, 24, 498 CrossRef CAS.
  13. H. Shioi, S. Yano, K. Toriumi, T. Ito and S. Yoshikawa, J. Chem. Soc., Chem. Commun., 1983, 201 RSC.
  14. S. Yano, M. Kato, H. Shioi, T. Takahashi, T. Tsubomura, K. Toriumi, T. Ito, M. Hidai and S. Yoshikawa, J. Chem. Soc., Dalton Trans., 1993, 1699 RSC.
  15. T. Tanase, K. Kurihara, S. Yano, K. Kobayashi, T. Sakurai and S. Yoshikawa, J. Chem. Soc., Chem. Commun., 1985, 1562 RSC.
  16. T. Tanase, F. Shimizu, S. Yano and S. Yoshikawa, J. Chem. Soc., Chem. Commun., 1986, 1001 RSC.
  17. T. Tanase, K. Kurihara, S. Yano, K. Kobayashi, T. Sakurai and S. Yoshikawa, Inorg. Chem., 1987, 26, 3134 CrossRef CAS.
  18. T. Tanase, T. Murata, S. Yano, M. Hidai and S. Yoshikawa, Chem. Lett., 1987, 1409 CAS.
  19. T. Tanase, F. Shimizu, K. Kuse, S. Yano, S. Yoshikawa and M. Hidai, J. Chem. Soc., Chem. Commun., 1987, 659 RSC.
  20. T. Tanase, F. Shimizu, S. Yano, M. Hidai, S. Yoshikawa and K. Asakura, J. Chem. Soc. Jpn., 1987, 3, 322 Search PubMed.
  21. T. Tanase, K. Ishida, T. Watanabe, M. Komiyama, K. Koumoto, S. Yano, M. Hidai and S. Yoshikawa, Chem. Lett., 1988, 327 CAS.
  22. T. Tanase, F. Shimizu, M. Kuse, S. Yano, M. Hidai and S. Yoshikawa, Inorg. Chem., 1988, 27, 4085 CrossRef CAS.
  23. T. Tanase, R. Nouchi, Y. Oka, M. Kato, N. Nakamura, T. Yamamura, Y. Yamamoto and S. Yano, J. Chem. Soc., Dalton Trans., 1993, 2645 RSC.
  24. T. Takei, T. Tanase, S. Yano and M. Hidai, Chem. Lett., 1991, 1629 CAS.
  25. S. Yano, T. Takahashi, Y. Sato, K. Ishida, T. Tanase, M. Hidai, K. Kobayashi and T. Sakurai, Chem. Lett., 1987, 2153 CAS.
  26. S. Yano, M. Doi, M. Kato, I. Okura, T. Nagano, Y. Yamamoto and T. Tanase, Inorg. Chim. Acta, 1996, 249, 1 CrossRef CAS.
  27. T. Tanase, R. N. M. Doi, M. Kato, Y. Sato, K. Ishida, K. Kobayashi, T. Sakurai, Y. Yamamoto and S. Yano, Inorg. Chem., 1996, 35, 4848 CrossRef CAS.
  28. S. Yano, S. Inoue, R. Nouchi, K. Mogami, Y. Shinohara, Y. Yasuda, M. Kato, T. Tanase, T. Kakuchi, Y. Mikata, T. Suzuki and Y. Yamamoto, J. Inorg. Biochem., in the press Search PubMed.
  29. T. Tanase, M. Nakagoshi, A. Teratani, M. Kato, Y. Yamamoto and S. Yano, Inorg. Chem., 1994, 33, 6.
  30. S. Yano, M. Nakagoshi, A. Tertani, M. Kato, T. Tanase, Y. Yamamoto, H. Uekusa and Y. Ohashi, Mol. Cryst. Liq. Cryst., 1996, 276, 253 Search PubMed.
  31. S. Yano, M. Nakagoshi, A. Teratani, M. Kato, T. Onaka, M. Iida, T. Tanase, Y. Yamamoto, H. Uekusa and Y. Ohashi, Inorg. Chem., 1997, 36, 4187 CrossRef CAS.
  32. K. Ishida, S. Yano and S. Yoshikawa, Inorg. Chem., 1986, 25, 3552 CrossRef CAS.
  33. K. Ishida, M. Yashiro, S. Yano, M. Hidai and S. Yoshikawa, J. Am. Chem. Soc., 1988, 110, 2015 CrossRef CAS.
  34. K. Ishida, S. Nonoyama, T. Hirano, S. Yano, M. Hidai and S. Yoshikawa, J. Am. Chem. Soc., 1989, 111, 1599 CrossRef CAS.
  35. K. Ishida, M. Yashiro, S. Yano, M. Hidai and S. Yoshikawa, J. Chem. Soc., Dalton Trans., 1989, 1241 RSC.
  36. T. Tanase, K. Mano and Y. Yamamoto, Inorg. Chem., 1993, 32, 3995 CrossRef CAS.
  37. S. Yano, S. T. M. Doi, W. Mori, M. Mikuriya, A. Ichimura, I. Kinoshita, Y. Yamamoto and T. Tanase, Chem. Commun., 1997, 997 RSC.
  38. T. Tanase, S. Tamakoshi, M. Doi, W. Mori and S. Yano, Inorg. Chim. Acta, 1997, 266, 5 CrossRef CAS.
  39. D. A. House and N. F. Curtis, J. Am. Chem. Soc., 1964, 86, 223 CrossRef CAS.
  40. R. N. Keller and L. J. Edwards, J. Am. Chem. Soc., 1952, 74, 215 CrossRef CAS.
  41. B. N. Figgis and J. Lewis, Modern Coordination Chemistry, Interscience, New York, 1960, p. 403 Search PubMed.
  42. M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389 CrossRef CAS.
  43. D. T. Cromer, Acta Crystallogr., 1965, 18, 17 CrossRef CAS.
  44. D. T. Cromer and J. T. Waber, International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974 Search PubMed.
  45. TEXSAN Structure Analysis Package, Molecular Structure Corporation, The Woodlands, TX, 1985.
  46. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, New York, 1972 Search PubMed.
  47. C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
Click here to see how this site uses Cookies. View our privacy policy here.