Low-spin octahedral cobalt(II) complexes of CoN6 and CoN4P2 chromophores. Synthesis, spectroscopic characterisation and electron-transfer properties[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Bidyut Kumar Santra and Goutam Kumar Lahiri


Abstract

The reaction of 2-(arylazo)pyridines (NC5H4)N[double bond, length half m-dash]NC6H4R L1–L7 (R = H, o-Me/Cl, m-Me/Cl, p-Me/Cl) with cobalt(II) perchlorate hexahydrate in absolute ethanol under anaerobic conditions afforded low-spin [CoIIL3]2+ complexes, isolated as ClO4 salts. At room temperature the complexes are one-electron paramagnetic in nature, low-spin CoII, t2g6eg1, S = ½ and behave as 1∶2 electrolytes in acetonitrile solvent. In acetonitrile solvent they show a ligand-to-metal charge-transfer (LMCT) band near 400 nm, an intraligand transition near 300 nm and ligand-field d–d transitions in the range 860–600 nm. The complexes exhibit quasi-reversible CoII–CoIII couples near 1 V and six sequential ligand reductions (N[double bond, length half m-dash]N groups) in the range 0.2 to –1.8 V versus saturated calomel electrode (SCE). At room temperature in the solid state they exhibit isotropic EPR spectra but at 77 K, both in the polycrystalline state and in the dichloromethane solution, display rhombic spectra. Reaction of [CoIIL3]2+ with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) resulted in complete ligand-exchanged products with concomitant metal oxidation, low-spin [CoIII(bpy)3]3+ and low-spin [CoIII(phen)3]3+ respectively. The reaction of PPh3 with the [CoII(L7)3]2+ [L7 = 2-(p-chlorophenylazo)pyridine] yielded a partial ligand-exchanged product, low-spin [CoII(L7)2(PPh3)2]2+, isolated as its ClO4 salt. The complex is one-electron paramagnet and a 1∶2 electrolyte in acetonitrile solvent. It displays an LMCT band at 401 nm, an intraligand transition at 305 nm and four d–d transitions in the range 870–640 nm. It exhibits irreversible CoII to CoIII oxidation at 1.33 V (Epa) and four successive ligand reductions in the range –0.30 to –1.1 V versus SCE. At 77 K the complex displays an axial EPR spectrum.


References

  1. C. Ohrenberg, P. Ge, P. Schebler, C. G. Riordan, G. P. A. Yap and A. L. Rheingold, Inorg. Chem., 1996, 35, 749 CrossRef CAS; F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 5th edn., 1988, p. 733 Search PubMed; R. S. Drago, Physical Methods for Chemists, Saunders College Publishing, New York, 2nd edn., 1992, p. 448 Search PubMed; J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry, Harper Collins College Publishers, New York, 4th edn., 1993, p. 452 Search PubMed.
  2. W. N. Setzer, C. A. Ogle, C. S. Wilson and R. S. Glass, Inorg. Chem., 1983, 22, 266 CrossRef CAS; J. R. Hartman, E. J. Hintsa and S. R. Cooper, J. Chem. Soc., Chem. Commun., 1984, 386 RSC; J. Am. Chem. Soc., 1986, 108, 1208 Search PubMed; G. S. Wilson, D. D. Swanson and R. S. Glass, Inorg. Chem., 1986, 25, 3827 Search PubMed; L. F. Warren and M. A. Bennett, J. Am. Chem. Soc., 1974, 96, 3340 CrossRef CAS; R. C. Stoufer and D. H. Busch, J. Am. Chem. Soc., 1956, 78, 6016 CrossRef CAS; Y. Nishida, K. Ida and S. Kida, Inorg. Chim. Acta, 1980, 38, 113 CrossRef CAS; V. Cuttica and M. Paoletti, Gazz. Chim. Ital., 1922, 52, 279 CrossRef CAS; F. Lions and K. V. Martin, J. Am. Chem. Soc., 1957, 79, 2733 CAS; 1958, 80, 3578 CrossRef CAS.
  3. F. H. Burstall and R. S. Nyholm, J. Chem. Soc., 1952, 3570 RSC; R. A. Palmer and M. C. L. Yang, Chem. Phys. Lett., 1975, 31, 492 CrossRef CAS.
  4. P. E. Figgins and D. H. Busch, J. Am. Chem. Soc., 1960, 82, 820 CAS.
  5. B. K. Santra, G. A. Thakur, P. Ghosh, A. Pramanik and G. K. Lahiri, Inorg. Chem., 1996, 35, 3050 CrossRef CAS; B. K. Santra and G. K. Lahiri, J. Chem. Soc., Dalton Trans., 1997, 129 RSC; P. Bandyopadhyay, D. Bandyopadhyay, A. Chakravorty, F. A. Cotton, L. R. Falvello and S. Han, J. Am. Chem. Soc., 1983, 105, 6327 CrossRef CAS.
  6. G. K. Lahiri, S. Goswami, L. R. Falvello and A. Chakravorty, Inorg. Chem., 1987, 26, 3365 CrossRef CAS.
  7. R. A. Krause and K. Krause, Inorg. Chem., 1980, 19, 2600 CrossRef CAS; S. Goswami, A. R. Chakravarty and A. Chakravorty, Inorg. Chem., 1982, 21, 2737 CrossRef CAS; B. K. Ghosh, A. Mukhopadhyay, S. Goswami, S. Ray and A. Chakravorty, Inorg. Chem., 1984, 23, 4633 CrossRef CAS; T. Bao, K. Krause and R. A. Krause, Inorg. Chem., 1988, 27, 759 CrossRef CAS.
  8. G. K. Lahiri, S. Bhattacharya, S. Goswami and A. Chakravorty, J. Chem. Soc., Dalton Trans., 1990, 561 RSC.
  9. S. Goswami, A. R. Chakravarty and A. Chakravorty, J. Chem. Soc., Chem. Commun., 1982, 1288 RSC.
  10. A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1984, p. 724 Search PubMed.
  11. I. Bertini, G. Canti, C. Luchinat and A. Scozzafava, J. Am. Chem. Soc., 1978, 100, 4873 CrossRef CAS.
  12. N. Tanaka and Y. Sato, Bull. Chem. Soc. Jpn., 1968, 41, 2059 CAS.
  13. P. S. Rao, G. A. Thakur and G. K. Lahiri, Indian J. Chem., Sect. A, 1996, 35, 946.
  14. S. Bhattacharya, Polyhedron, 1993, 12, 235 CrossRef CAS; S. Goswami, R. N. Mukherjee and A. Chakravorty, Inorg. Chem., 1983, 22, 2825 CrossRef CAS.
  15. N. Bag, A. Pramanik, G. K. Lahiri and A. Chakravorty, Inorg. Chem., 1992, 31, 40 CrossRef CAS; B. K. Ghosh and A. Chakravorty, Coord. Chem. Rev., 1989, 95, 239 CrossRef CAS.
  16. J. K. Burdett, Adv. Inorg. Chem. Radiochem., 1978, 21, 113 Search PubMed; Inorg. Chem., 1976, 15, 212 Search PubMed; 1975, 14, 375.
  17. A. Pramanik, N. Bag, D. Ray, G. K. Lahiri and A. Chakravorty, Inorg. Chem., 1991, 30, 410 CrossRef CAS; G. K. Lahiri, S. Bhattacharya, M. Mukherjee, A. K. Mukherjee and A. Chakravorty, Inorg. Chem., 1987, 26, 3359 CrossRef CAS.
  18. B. K. Santra, M. Menon, C. K. Pal and G. K. Lahiri, J. Chem. Soc., Dalton Trans., 1997, 1387 RSC; D. T. Sawyer and J. L. Roberts, jun., Experimental Electrochemistry for Chemists, Wiley, New York, 1974, p. 167 Search PubMed.
  19. N. Campbell, A. W. Henderson and D. Taylor, J. Chem. Soc., 1953, 1281 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.