Lanthanide–sulfur gas-phase chemistry: reactions of Ln+ with S8[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Keith Fisher, Ian Dance and Gary Willett


Abstract

All of the lanthanides except promethium have been treated as monocations Ln+ with S8(g), in an ion cyclotron resonance mass spectrometer. A rich array of 213 new [LnSx]+ ions is described. Each lanthanide generates sequences of products [LnSx]+ in which x generally increases with time. Dominant intermediate ions in these sequences occur with x = 2 (La, Gd), 3 (Eu, Yb), 4 (Nd, Sm, Tb, Dy, Ho, Er, Tm, Lu), 6 (La, Ce, Pr), 9 (Yb), 10 (Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), 11 (Eu), 12 (La, Ce, Pr, Gd), 14 (La) and 18 (Nd). The largest product observed is [LnS21]+ for La and Pr, and the size of the largest ion drops towards the end of the lanthanide series. There is a remarkable similarity between the reactions of Eu+ (f[hair space]7s1) and Ca+ (s1) with S8: both form [MS3]+ rapidly, then add S8 rapidly to form an isomer which can easily dissociate S8, and also form more slowly a second isomer [MS11]+ which is more stable. Other M+ with s1 ground-state configurations do not behave similarly. The smaller [LnSx]+ probably contain co-ordinated S2, S3 and S4, while some of the larger [LnSx]+ may contain associated S8 molecules not bonded directly to Ln. Reaction rates correlate approximately with the occurrence of a ground or low excited state with two unpaired non-f electrons.


References

  1. I. G. Dance, K. J. Fisher and G. D. Willett, Inorg. Chem., 1996, 35, 4177 CrossRef CAS.
  2. I. G. Dance, K. J. Fisher and G. D. Willett, J. Chem. Soc., Chem. Commun., 1995, 975 RSC.
  3. I. G. Dance, K. J. Fisher and G. D. Willett, Angew. Chem., Int. Ed. Engl., 1995, 34, 201 CrossRef CAS.
  4. W. W. Yin, A. G. Marshall, J. Marcalo and A. P. Matos, J. Am. Chem. Soc., 1994, 116, 8666 CrossRef CAS.
  5. J. K. Gibson, J. Phys. Chem., 1996, 100, 15 688 CrossRef CAS.
  6. L. S. Sunderlin and P. B. Armentrout, J. Am. Chem. Soc., 1989, 111, 3845 CrossRef CAS.
  7. H. H. Cornehl, C. Heinemann, D. Schroder and H. Schwarz, Organometallics, 1995, 14, 992 CrossRef CAS.
  8. C. Heinemann, D. Schroder and H. Schwarz, Chem. Ber., 1994, 127, 1807 CAS.
  9. J. B. Schilling and J. L. Beauchamp, J. Am. Chem. Soc., 1988, 110, 15 CrossRef CAS.
  10. C. Heinemann, N. Goldberg, I. C. Tornieporth-Oetting, T. M. Klapötke and H. Schwarz, Angew. Chem., Int. Ed. Engl., 1995, 34, 213 CrossRef CAS.
  11. H. H. Cornehl, G. Hornung and H. Schwarz, J. Am. Chem. Soc., 1996, 118, 9960 CrossRef CAS.
  12. A. C. Sutorik and M. G. Kanatzidis, Angew. Chem., Int. Ed. Engl., 1992, 31, 1594 CrossRef.
  13. A. C. Sutorik and M. G. Kanatzidis, Chem. Mater., 1997, 9, 387 CrossRef CAS.
  14. K. J. Fisher, I. G. Dance and G. D. Willett, Rapid Commun. Mass Spetrom., 1996, 10, 106 Search PubMed.
  15. T. J. McMahon, T. C. Jackson and B. S. Freiser, J. Am. Chem. Soc., 1989, 111, 421 CrossRef CAS; J. R. Gord and B. S. Freiser, Anal. Chim. Acta, 1989, 225, 11 CrossRef CAS.
  16. F. Tast, N. Malinowski, M. Heinebrodt, I. M. L. Billas and T. P. Martin, J. Chem. Phys., 1997, 106, 9372 CrossRef CAS.
  17. G. Roth and P. Adelmann, J. Phys. I, 1992, 2, 1541 Search PubMed.
  18. N. D. Kushch, I. Majchrzak, W. Ciesielski, A. Graja, K. Wozniak and T. M. Krygowski, J. Phys. I, 1987 Search PubMed.
  19. H. B. Burgi, P. Venugopalan, D. Schwarzenbach, F. Diedrich and C. Thilgen, Helv. Chim. Acta, 1993, 76, 2155 CrossRef.
  20. G. Roth, P. Adelmann and R. Knitter, Mater. Lett., 1993, 16, 357 CrossRef CAS.
  21. G. R. P. Adelmann and G. Roth, Appl. Phys. A, 1993, 56, 169 Search PubMed.
  22. D. Heymann, J. C. Stormer and M. L. Pierson, Carbon, 1991, 1053 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.