Structure of diiodine adducts of some di- and tri-tertiaryphosphines in the solid state and in solution

(Note: The full text of this document is currently only available in the PDF Version )

Neil Bricklebank, Stephen M. Godfrey, Charles A. McAuliffe, Paula Deplano, Marie L. Mercuri and Joanne M. Sheffield


Abstract

A series of ditertiaryphosphine–tetraiodine adducts R2P(I2)(CH2)nP(I2)R2 (R = Ph, n = 1–4; R = PhCH2 or o-CH3C6H4, n = 2) and two tritertiaryphosphine–hexaiodine adducts, PhP(CH2CH2PPh2)2I6 and CH3C(CH2PPh2)3I6 have been prepared and characterised by 31P-{H} solution NMR and Raman spectroscopy. In the case of Ph2P(I2)(CH2)nP(I2)Ph2 (n = 2 or 4), 31P-{H} NMR magic angle spinning NMR spectroscopy has been used to investigate the nature of the compounds in the solid state. In agreement with our previous extensive studies on the monophosphine derivatives, R3PI2, the tetraiododiphosphine compounds Ph2P(I2)(CH2)nP(I2)Ph2 (n = 2 or 4) isolated from diethyl ether contain molecular four-co-ordinate phosphorus centres onto which the diiodine is bound as a linear spoke, as indicated by their 31P-{H} NMR shifts obtained in CDCl3 solution. Again, in agreement with our previous solution studies of the monophosphine derivatives R3PI2, the diphosphine–tetraiodine adducts completely ionise in CDCl3 solution to produce the ionic compounds [R2P(I)(CH2)nP(I)R2]2I; the solution 31P-{H} NMR shifts are very similar to analogous solution shifts previously assigned to [R3PI]I. The Raman band assignable to ν(P–I) has been identified for the compounds and a further band at lower frequency has been observed and assigned to ν(I–I). Although the solid-state NMR spectra of the triphosphine–hexaiodine adducts were not recorded, a band assignable to ν(I–I) was observed in the Raman spectrum, suggesting the molecular four-co-ordinate spoke structure also prevails for these hexaiodotritertiaryphosphine compounds in the solid state. From solution 31P-{H} NMR shifts these adducts also appear to ionise in CDCl3 solution.


References

  1. B. M. Gladstein, V. G. Noskov and L. Z. Soborovskii, Zh. Obshch. Khim., 1967, 37, 2513.
  2. S. P. Schmidt and D. W. Brooks, Tetrahedron Lett., 1987, 28, 767 CrossRef.
  3. J. Ellermann and D. Schirmacher, Chem. Ber., 1969, 102, 289 CAS.
  4. S. M. Godfrey, D. G. Kelly, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and S. M. Watson, J. Chem. Soc., Chem. Commun., 1991, 1163 RSC.
  5. N. Bricklebank, S. M. Godfrey, A. G. Mackie, C. A. McAuliffe, R. G. Pritchard and P. J. Kobryn, J. Chem. Soc., Dalton Trans., 1993, 101 RSC.
  6. N. Bricklebank, S. M. Godfrey, H. P. Lane, C. A. McAuliffe, R. G. Pritchard and J. M. Moreno, J. Chem. Soc., Dalton Trans., 1995, 2421 RSC.
  7. J. Goubeau and R. Baumigartner, Z. Elektrochem., 1960, 64, 598 Search PubMed.
  8. F. W. Parrett, Spectrochim. Acta, Part A, 1969, 26, 1271 CrossRef CAS.
  9. S. M. Godfrey, N. Ho, C. A. McAuliffe and R. G. Pritchard, Angew. Chem., Int. Ed. Engl., 1996, 35, 2343 CrossRef.
  10. H. Pritzkow, Acta Crystallogr., Sect. B, 1975, 31, 1505 CrossRef.
  11. A. I. Popov and R. F. Svenson, J. Am. Chem. Soc., 1955, 77, 3724 CrossRef.
  12. F. W. Parrett and N. J. Naylor, J. Inorg. Nucl. Chem., 1970, 32, 2458 CrossRef CAS.
  13. E. M. Nour, L. H. Chen and J. Lane, J. Phys. Chem., 1986, 90, 2481.
  14. R. Poli, J. C. Gordon, R. K. Khanna and P. E. Fanwich, Inorg. Chem., 1992, 31, 3165 CrossRef CAS.
  15. P. Deplano, S. M. Godfrey, F. Isaia, C. A. McAuliffe, M. L. Mercuri and E. F. Trogu, Chem. Ber., 1997, 130, 299 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.