Syntheses and structures of novel cyclic and dinuclear organorhodoximes: a homologous series of di- to penta-methylene-bridged complexes[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Dirk Steinborn, Mario Rausch, Clemens Bruhn, Harry Schmidt and Dieter Ströhl


Abstract

The compound [Rh(Hdmg)2(PPh3)] ([Rh]), synthesized by reduction of [Rh]–Cl with NaBH4 in methanolic KOH, reacted with 1,2-disubstituted ethanes XCH2CH2X′ (X/X′ = Cl/OMe or Br/Br) forming [Rh]–CH2CH2OMe 1a as well as [Rh]–Br and ethylene as heterolytic fragmentation products. Heterolytic fragmentation of 1a enforced by protonation with acids (CF3SO3H, CD3CO2D) generated MeOH, H2C[double bond, length half m-dash]CH2 and [Rh]–O3SCF3 and [Rh]–O2CCD3, respectively. Reaction of [Rh] with XCH2CH2X′ (X/X′ = Cl/Cl, Cl/Br or Cl/OPh) afforded the dinuclear complex [Rh]CH2CH2[Rh] 2a. The anion [Rh] reacted with Cl(CH2)3Cl to give [Rh]–CH2CH2CH2Cl 1b, whereas Br(CH2)3Br was reacted with excess and equimolar amounts of [Rh], yielding [Rh]CH2CH2CH2[Rh] 2b and [[upper bond 1 start]Rh{(CH2)3ON[upper bond 2 start]  [double bond, length half m-dash]C(Me)C(Me)[double bond, length half m-dash]N[upper bond 1 end][upper bond 2 end]O}(Hdmg)(PPh3)] 3b, respectively. Similar reactions carried out with Br(CH2)nBr (n = 4 or 5) yielded [Rh]–(CH2)5Br 1d, [Rh](CH2)n[Rh] (n = 4 2c or 5 2d) and [[upper bond 1 start]Rh{(CH2)nON[upper bond 2 start]  [double bond, length half m-dash]C(Me)C(Me)[double bond, length half m-dash]N[upper bond 1 end][upper bond 2 end]O}(Hdmg)(PPh3)] (n = 4 3c or 5 3d), respectively. All complexes were fully characterized by NMR spectroscopy (1H, 13C, 31P). The 31P-{1H} NMR spectra of dinuclear complexes 2a and 2b exhibit typical AA′ patterns of AA′XX′ systems (A = 31P, X = 103Rh) due to considerable 5J(31P–31P) and 6J(31P–31P) couplings (36.7, 11.2 Hz), respectively. The crystal structures of the dinuclear rhodoximes 2a–2c and of the cyclic organorhodoxime 3b have been determined. The two (Hdmg)2 planes in the di- and tetra-methylene-bridged complexes 2a and 2c are parallel with distances of 4.5 (2a) and 7.1 Å (2c), respectively, and exhibit an ecliptic conformation. In the trimethylene-bridged complex 2b, the two (Hdmg)2 planes include an angle of 45.0(1)° and exhibit a staggered conformation, which minimizes electrostatic repulsion between the O–H–O moieties and the steric interference between two methyl groups. In all three complexes the oligo-methylene bridges are fully staggered. In 3b the six-membered ring (1-oxa-2-aza-3-rhodacyclohexane) exhibits a distorted chair conformation. The distance between the two O atoms in the O–H–O bridge [O(2)[hair space][hair space]· · ·[hair space][hair space]O(3) 2.58(1) Å] is distinctly shorter than those that are not connected via a hydrogen bridge [O(1)[hair space][hair space]· · ·[hair space][hair space]O(4) 3.30(1) Å].


References

  1. J. R. Moss and L. G. Scott, Coord. Chem. Rev., 1984, 60, 171 CrossRef CAS; C. P. Casey and J. D. Audett, Chem. Rev., 1986, 86, 339 CrossRef CAS; J. R. Puddephatt, Polyhedron, 1988, 7, 767 CrossRef CAS; W. Beck, B. Niemer and M. Wieser, Angew. Chem., 1993, 105, 969 CAS; Angew. Chem., Int. Ed. Engl., 1993, 32, 923 Search PubMed.
  2. R. B. King, Inorg. Chem., 1963, 2, 531 CrossRef CAS.
  3. Y. C. Lin, J. C. Calabrese and S. S. Wreford, J. Am. Chem. Soc., 1983, 105, 1679 CrossRef CAS; D. J. Crowther, N. C. Baenziger and R. F. Jordan, J. Am. Chem. Soc., 1991, 113, 1455 CrossRef CAS; F. R. Lemke, D. J. Szalda and R. M. Bullock, J. Am. Chem. Soc., 1991, 113, 8466 CrossRef CAS; M. A. Gafoor, A. T. Hutton and J. R. Moss, J. Organomet. Chem., 1996, 510, 233 CrossRef CAS; K. Raab, U. Nagel and W. Beck, Z. Naturforsch., Teil B, 1983, 38, 1466 Search PubMed; L. Pope, P. Sommerville, M. Laing, K. J. Hindson and J. R. Moss, J. Organomet. Chem., 1976, 112, 309 CrossRef CAS; H. Adams, N. A. Bailey and M. J. Winter, J. Chem. Soc., Dalton Trans., 1984, 273 RSC; K. P. Finch, J. R. Moss and M. L. Niven, Inorg. Chim. Acta, 1989, 166, 181 CrossRef CAS; S. J. Archer, K. P. Finch, H. B. Friedrich, J. R. Moss and A. M. Crouch, Inorg. Chim. Acta, 1991, 182, 145 CrossRef CAS.
  4. Cambridge Structural Database (CSD), Cambridge Crystallographic Data Centre, University Chemical Laboratory, Cambridge.
  5. B. Kräutler, T. Derer, P. Liu, W. Mühlecker, M. Puchberger, K. Gruber and C. Kratky, Angew. Chem., 1995, 107, 66; Angew. Chem., Int. Ed. Engl., 1995, 34, 84 Search PubMed.
  6. J. H. Weber and G. N. Schrauzer, J. Am. Chem. Soc., 1970, 92, 726 CrossRef CAS.
  7. (a) C. W. Fong and M. D. Johnson, J. Chem. Soc., Perkin Trans. 2, 1973, 986 RSC; (b) R. Dreos Garlatti, G. Tauzher and G. Costa, Inorg. Chim. Acta, 1986, 121, 27 CrossRef; (c) K. R. Howes, A. Bakac and J. H. Espenson, Inorg. Chem., 1988, 27, 3147 CrossRef CAS; (d) D. Steinborn, U. Sedlak and M. Dargatz, J. Organomet. Chem., 1991, 415, 407 CrossRef CAS; (e) D. Steinborn and M. Ludwig, J. Organomet. Chem., 1993, 463, 65 CrossRef CAS; (f) F. Asaro, R. Dreos Garlatti, G. Pellizer and G. Tauzher, Inorg. Chim. Acta, 1993, 211, 27 CrossRef CAS; (g) R. Boca, M. Dunaj-Jurco, I. Potocnak, D. Steinborn and M. Ludwig, J. Mol. Catal., 1995, 95, 141 Search PubMed; (h) D. Steinborn, L. Yang and A. M. A. Aisa, J. Organomet. Chem., 1996, 526, 43 CrossRef CAS; (i) A. M. A. Aisa, F. W. Heinemann and D. Steinborn, Z. Anorg. Allg. Chem., 1996, 622, 1946 CrossRef CAS; (j) F. W. Heinemann, A. M. A. Aisa and D. Steinborn, Z. Kristallogr., 1996, 211, 837 CAS.
  8. F. Asaro, G. Costa, R. Dreos, G. Pellizer and W. von Philipsborn, J. Organomet. Chem., 1996, 513, 193 CrossRef CAS.
  9. M. Ludwig, L. Öhrstöm and D. Steinborn, J. Magn. Reson., 1995, 33, 984 CAS.
  10. (a) V. Kettmann, M. Dunaj-Jurco, D. Steinborn and M. Ludwig, Acta Crystallogr., Sect. C, 1994, 50, 1239 CrossRef; (b) M. Dunaj-Jurco, V. Kettmann, D. Steinborn and M. Ludwig, Acta Crystallogr., Sect. C, 1994, 50, 1427 CrossRef; (c) M. Dunaj-Jurco, V. Kettmann, D. Steinborn and M. Ludwig, Acta Crystallogr., Sect. C, 1995, 51, 210 CrossRef; (d) I. Potocnak, M. Dunaj-Jurco, M. Ludwig and D. Steinborn, Acta Crystallogr., Sect. C, 1995, 51, 1999 CrossRef; (e) M. Dunaj-Jurco, D. Miklos, I. Potocnak, M. Ludwig and D. Steinborn, Acta Crystallogr., Sect. C, 1996, 52, 315 CrossRef; (f) V. Kettmann, M. Dunaj-Jurco, D. Steinborn and M. Ludwig, Acta Crystallogr., Sect. C, 1996, 52, 1399 CrossRef.
  11. N. Bresciani Pahor, R. Dreos-Garlatti, S. Geremia, L. Randaccio, G. Tauzher and E. Zangrando, Inorg. Chem., 1990, 29, 3437 CrossRef; B. Giese, J. Hartung, C. Kesselheim, H. J. Lindner and I. Svoboda, Chem. Ber., 1993, 126, 1193 CAS; S. Geremia, L. Randaccio, R. Dreos and G. Tauzher, Gazz. Chim. Ital., 1995, 125, 95 CAS; S. Geremia, R. Dreos, L. Randaccio, G. Tauzher and L. Antolini, Inorg. Chim. Acta, 1994, 216, 125 CrossRef CAS.
  12. D. Steinborn, A. M. A. Aisa, F. W. Heinemann and S. Lehmann, J. Organomet. Chem., 1997, 527, 239 CrossRef CAS.
  13. R. Dreos Garlatti, G. Tauzher, M. Blaschich and G. Costa, Inorg. Chim. Acta, 1985, 105, 129 CrossRef; J. H. Espenson and R. C. McHatton, Inorg. Chem., 1981, 20, 3090 CrossRef CAS; F. Asaro, R. Dreos, S. Geremia, G. Nardin, G. Pellizer, L. Randaccio, G. Tauzher and S. Vuano, J. Organomet. Chem., 1996, 525, 71 CrossRef CAS.
  14. R. Dreos, G. Tauzher, S. Geremia, L. Randaccio, F. Asaro, G. Pellizer, C. Tavagnacco and G. Costa, Inorg. Chem., 1994, 33, 5404 CrossRef CAS.
  15. P. Powell, J. Chem. Soc. A, 1969, 2418 RSC.
  16. G. M. Sheldrick, SHELXS 86, Program for the Solution of Crystal Structures, University of Göttingen, 1986.
  17. G. M. Sheldrick, SHELXL 93, Program for the Refinement of Crystal Structures, University of Göttingen, 1993.
  18. T. Ramasami and J. H. Espenson, Inorg. Chem., 1980, 19, 1846 CrossRef CAS.
  19. Y. Ni, J. P. Fitzgerald, P. Carroll and B. B. Wayland, Inorg. Chem., 1994, 33, 2029 CrossRef CAS; K. J. Del Rossi, X.-X. Zhang and B. B. Wayland, J. Organomet. Chem., 1995, 504, 47 CrossRef CAS; M. Wei and B. B. Wayland, Organometallics, 1996, 15, 4681 CrossRef CAS.
  20. G. N. Schrauzer and R. J. Windgassen, J. Am. Chem. Soc., 1966, 88, 3738 CrossRef CAS.
  21. J. P. Collman and M. R. MacLaury, J. Am. Chem. Soc., 1974, 96, 3019 CrossRef CAS; J. P. Collman, J. I. Brauman and A. M. Madonik, Organometallics, 1986, 5, 218 CrossRef CAS.
  22. K. P. Finch and J. R. Moss, J. Organomet. Chem., 1988, 346, 253 CrossRef CAS.
  23. P. S. Pregosin and R. W. Kunz, NMR basic principles and progress, Springer, Berlin, 1979, vol. 16 Search PubMed.
  24. PERCH, an integrated software for analysis of NMR spectra on a personal computer, version 1/96, University of Kuopio, 1996.
  25. N. Bresciani Pahor, M. Forcolin, L. G. Marzilli, L. Randaccio, M. F. Summers and P. J. Toscano, Coord. Chem. Rev., 1985, 63, 1 CrossRef CAS; L. Randaccio, N. Bresciani Pahor and E. Zangrando, Chem. Soc. Rev., 1989, 18, 225 RSC.
  26. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins, New York, 4th edn., 1993, p. 292 Search PubMed.
  27. K. G. Caulton and F. A. Cotton, J. Am. Chem. Soc., 1971, 93, 1914 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.