A theoretical study of [M(PH3)4] (M = Ru or Fe), models for the highly reactive d8 intermediates [M(dmpe)2] (dmpe = Me2PCH2CH2PMe2). Zero activation energies for addition of CO and oxidative addition of H2[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Stuart A. Macgregor, Odile Eisenstein, Michael K. Whittlesey and Robin N. Perutz


Abstract

Density functional calculations have been carried out on [M(PH3)4] species as models for transient [M(dmpe)2] formed from the photolysis of [M(dmpe)2H2] (M = Ru or Fe, dmpe = Me2PCH2CH2PMe2). Calculations have also been performed on [Rh(PH3)4]+ as a model for the relatively inert [Rh(dmpe)2]+. The singlet electron configurations of [Ru(PH3)4] and [Rh(PH3)4]+ were found to have D2d geometries with trans P–M–P angles of 159 (M = Ru) and 172° (M = Rh+). Singlet [Fe(PH3)4] was computed to have a C2v structure with trans P–M–P angles of 137 and 160° at Fe. The triplet configurations of [Fe(PH3)4] and [Ru(PH3)4] were predicted to adopt C2v geometries with angles of ca. 155 and 95° for both species. Singlet [Ru(PH3)4] is calculated to be 11.7 kcal mol–1 more stable than the triplet, but the triplet form of [Fe(PH3)4] is the more stable by 8.0 kcal mol–1. The addition of CO and oxidative addition of H2 to [M(PH3)4] (M = Ru or Fe) were calculated to be highly exothermic. In contrast, the reaction between [Rh(PH3)4]+ and H2 is less thermodynamically favoured, consistent with the lower reactivity of experimental Rh+ analogues. Both the oxidative addition of H2 and addition of CO were calculated to proceed without activation energy for [Ru(PH3)4], but only once the ‘end-on’ approach of H2 and an angled approach of CO at long ruthenium–substrate separations are considered. The calculations on [Ru(PH3)4] also reproduced the UV/VIS spectrum and geometry of [Ru(dmpe)2] satisfactorily. The reaction of singlet [Fe(PH3)4] with CO was calculated to be barrierless, while the oxidative addition of H2 required a very small activation energy (≈1 kcal mol–1) at long Fe–H2 distances. The reaction of [Rh(PH3)4]+ with H2 has a somewhat larger activation barrier (≈3 kcal mol–1) and is predicted to pass through a product-like C2v transition state.


References

  1. R. Hoffmann, Angew. Chem., Int. Ed. Engl., 1982, 21, 711 CrossRef.
  2. M. Poliakoff, Chem. Soc. Rev., 1978, 7, 527 RSC.
  3. M. Poliakoff and E. Weitz, Acc. Chem. Res., 1987, 20, 408 CrossRef CAS; R. J. Ryther and E. Weitz, J. Phys. Chem., 1991, 95, 9841 CrossRef CAS; W. Wang, A. A. Narducci, P. G. House and E. Weitz, J. Am. Chem. Soc., 1996, 118, 8654 CrossRef CAS.
  4. F. W. Grevels, in Photoprocesses in Transition-metal Complexes, Biosystems and Other Molecules. Experiment and Theory, ed. E. Kochansky, Kluwer, Dordrecht, 1992 Search PubMed.
  5. P. L. Bogdan and E. Weitz, J. Am. Chem. Soc., 1989, 111, 3163 CrossRef CAS.
  6. M. K. Whittlesey, R. J. Mawby, R. Osman, R. N. Perutz, L. D. Field, M. P. Wilkinson and M. W. George, J. Am. Chem. Soc., 1993, 115, 8627 CrossRef CAS.
  7. C. Hall, W. D. Jones, R. J. Mawby, R. Osman, R. N. Perutz and M. K. Whittlesey, J. Am. Chem. Soc., 1992, 114, 7425 CrossRef CAS.
  8. B. Yau and L. D. Field, personal communication.
  9. M. Ogasawara, S. A. Macgregor, W. E. Streib, K. Folting, O. Eisenstein and K. G. Caulton, J. Am. Chem. Soc., 1995, 117, 8869 CrossRef CAS; 1996, 118, 10 189.
  10. R. J. Mawby, R. N. Perutz and M. K. Whittlesey, Organometallics, 1995, 14, 3268 CrossRef CAS.
  11. L. D. Field, A. W. George and B. A. Messerle, J. Chem. Soc., Chem. Commun., 1991, 1339 RSC.
  12. J. K. Burdett, J. Chem. Soc., Faraday Trans. 2, 1974, 1599 RSC.
  13. J. K. Burdett, Inorg. Chem., 1975, 14, 375 CrossRef CAS.
  14. M. Elian and R. Hoffmann, Inorg. Chem., 1975, 14, 1058 CrossRef CAS.
  15. (a) T. Ziegler, V. Tschinke, L. Fan and A. D. Becke, J. Am. Chem. Soc., 1989, 111, 9177 CrossRef CAS; (b) T. Ziegler, Inorg. Chem., 1986, 25, 2721 CrossRef CAS; (c) J. Li, G. Schreckenbach and T. Ziegler, J. Am. Chem. Soc., 1995, 117, 486 CrossRef CAS.
  16. (a) W. Wang and E. Weitz, J. Phys. Chem. A., 1997, 101, 2358 CrossRef CAS; (b) E. Ruiz, P. Alemany, S. Alvarez and J. Cano, J. Am. Chem. Soc., 1997, 119, 1297 CrossRef CAS.
  17. P. E. M. Siegbahn, M. R. A. Blomberg and M. Svensson, J. Am. Chem. Soc., 1993, 115, 4191 CrossRef CAS; P. E. M. Siegbahn and M. R. A. Blomberg, Organometallics, 1994, 13, 354 CrossRef CAS; P. E. M. Siegbahn, Organometallics, 1994, 13, 2833 CrossRef CAS.
  18. J. O. Noell and P. J. Hay, J. Am. Chem. Soc., 1982, 104, 4578 CrossRef CAS; J.-Y. Saillard and R. Hoffmann, J. Am. Chem. Soc., 1984, 106, 2006 CrossRef CAS.
  19. (a) F. Abu-Hasanayn, K. Krogh-Jesperson and A. S. Goldman, J. Am. Chem. Soc., 1994, 116, 5979 CrossRef CAS; (b) F. Abu-Hasanayn, K. Krogh-Jesperson and A. S. Goldman, Inorg. Chem., 1993, 32, 495 CrossRef CAS; (c) F. Abu-Hasanayn, A. S. Goldman and K. Krogh-Jesperson, J. Phys. Chem., 1993, 97, 5890 CrossRef CAS.
  20. A. Sevin, Nouv. J. Chim., 1981, 5, 233 Search PubMed.
  21. A. Dedieu and A. Strich, Inorg. Chem., 1979, 18, 2940 CrossRef CAS.
  22. F. M. Bickelhaupt, E. J. Baerends and W. Ravenek, Inorg. Chem., 1990, 29, 350 CrossRef.
  23. T. R. Cundari, J. Am. Chem. Soc., 1994, 116, 340 CrossRef CAS.
  24. N. Koga and K. Morokuma, J. Phys. Chem., 1990, 94, 5454 CrossRef CAS; Chem. Rev., 1991, 91, 823 Search PubMed; F. Maseras, N. Koga and K. Morokuma, Organometallics, 1994, 13, 4008 Search PubMed; S. Obara, K. Kitaura and K. Morokuma, J. Am. Chem. Soc., 1984, 106, 7482 CrossRef CAS; D. G. Musaev and K. Morokuma, J. Am. Chem. Soc., 1995, 117, 799 CrossRef CAS; N. Koga and K. Morokuma, J. Am. Chem. Soc., 1993, 115, 6883 CrossRef CAS.
  25. A. L. Sargent and M. B. Hall, Inorg. Chem., 1992, 31, 317 CrossRef CAS; A. L. Sargent, M. B. Hall and M. F. Guest, J. Am. Chem. Soc., 1992, 114, 517 CrossRef CAS; J. Song and M. B. Hall, Organometallics, 1993, 12, 3118 CrossRef CAS.
  26. Y. Jean and A. Lledos, Nouv. J. Chim., 1986, 10, 635 Search PubMed.
  27. S. Sakaki and Y. Musashi, J. Chem. Soc., Dalton Trans., 1994, 3047 RSC.
  28. R. H. Crabtree, Angew. Chem., Int. Ed. Engl., 1993, 32, 789 CrossRef; C. Hall and R. N. Perutz, Chem. Rev., 1996, 96, 3125 CrossRef CAS.
  29. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989 Search PubMed; E. S. Kryachko and E. V. Ludena, Density Functional Theory of Many Electron Systems, Kluwer, Dordrecht, 1990 Search PubMed; V. Tschinke and T. Ziegler, Can. J. Chem., 1989, 67, 460 Search PubMed.
  30. T. Ziegler, Chem. Rev., 1991, 91, 651 CrossRef CAS; L. Fan and T. Ziegler, J. Chem. Phys., 1991, 95, 7401 CrossRef CAS.
  31. T. B. Marder and I. D. Williams, J. Chem. Soc., Chem. Commun., 1987, 1478 RSC.
  32. R. A. Jones, F. M. Real, G. Wilkinson, A. M. R. Galas, M. B. Hursthouse and K. M. A. Malik, J. Chem Soc., Dalton Trans., 1980, 511 RSC.
  33. R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397 CrossRef.
  34. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 71; E. J. Baerends, J. G. Snijders, C. A. de Lange and G. Jonkers, in Local Density Approximations in Quantum Chemistry and Solid State Physics, eds. J. P. Dahl and J. Avery, Plenum, New York, 1984 Search PubMed.
  35. G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84 CrossRef CAS.
  36. J. G. Snijders, E. J. Baerends and P. Vernooijs, At. Data Nucl. Data Tables, 1982, 26, 483 CrossRef; P. Vernooijs, J. G. Snijders and E. J. Baerends, Slater type basis functions for the whole periodic system, Internal Report, Free University of Amsterdam, 1981 Search PubMed.
  37. T. Ziegler, V. Tschinke, E. J. Baerends, J. G. Snijders and W. Ravenek, J. Chem. Phys., 1989, 93, 3050 CrossRef CAS.
  38. S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  39. L. Versluis and T. Ziegler, J. Chem. Phys., 1988, 88, 322 CrossRef CAS.
  40. A. D. Becke, Phys. Rev. A., 1988, 38, 3098 CrossRef CAS.
  41. J. P. Perdew, Phys. Rev. B., 1986, 33, 8822 CrossRef.
  42. W. D. Jones and E. Libertini, Inorg. Chem., 1986, 25, 1794 CrossRef CAS.
  43. A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem Soc., Dalton Trans., 1989, S1 RSC.
  44. T. A. Albright, J. K. Burdett and M.-H. Whangbo, Orbital Interactions in Chemistry, Wiley, New York, 1985 Search PubMed.
  45. J. S. Ricci, T. F. Koetzle, M. T. Bautista, T. M. Hofstede, R. H. Morris and J. F. Sawyer, J. Am. Chem. Soc., 1989, 111, 8823 CrossRef CAS.
  46. L. S. Van Der Sluys, J. Eckert, O. Eisenstein, J. H. Hall, J. C. Huffmann, S. A. Jackson, T. F. Koetzle, G. J. Kubas, P. J. Vergamini and K. G. Caulton, J. Am. Chem. Soc., 1990, 112, 4831 CrossRef CAS.
  47. M.-J. Fernandez, P. M. Bailey, P. O. Bentz, J. S. Ricci, T. F. Koetzle and P. M. Maitlis, J. Am. Chem. Soc., 1984, 106, 5458 CrossRef CAS.
  48. L. Brammer, W. T. Klooster and F. R. Lemke, Organometallics, 1996, 15, 1721 CrossRef CAS.
  49. F. A. Cotton, K. I. Hardcastle and G. A. Rusholme, J. Coord. Chem., 1973, 2, 217 CAS.
  50. T. Ziegler, NATO ASI Ser. C., 1992, 378, 367 Search PubMed.
  51. T. Ziegler, V. Tschinke and C. Ursenbach, J. Am. Chem. Soc., 1987, 109, 4825 CrossRef CAS.
  52. A. W. Ehlers, S. Dapprich, S. F. Vyboishchikov and G. Frenking, Organometallics, 1996, 15, 105 CrossRef CAS.
  53. K. E. Lewis, D. M. Golden and G. P. Smith, J. Am. Chem. Soc., 1984, 106, 3905 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.