Equilibrium and kinetic studies on the formation of the lanthanide(III) complexes, [Ce(dota)] and [Yb(dota)] (H4dota = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)

(Note: The full text of this document is currently only available in the PDF Version )

László Burai, István Fábián, Róbert Király, Erika Szilágyi and Ernö Brücher


Abstract

The protonation constants (K[hair space] iH) of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (H4dota) were redetermined at 25 °C in 0.1 M NMe4Cl. The log Ki[hair space] H values (i = 1–5) are 12.6, 9.70, 4.50, 4.14 and 2.32, respectively. The stability constants of [Ce(dota)] and [Yb(dota)] were determined by pH-potentiometry as log KCeL = 24.6 and log KYbL = 26.4. The formation rates of [Ce(dota)] and [Yb(dota)] were studied by the stopped-flow method at much higher pH values than before. In the range pH 3.5–9.3 the spectra were interpreted in terms of the formation of diprotonated, [Ce(H2dota)]+, and (at around pH > 8) monoprotonated, [Ce(Hdota)], intermediates. These two species are characterized by the same spectra (and structure). At pH < 7.5 the formation rates of the complexes were directly proportional to the OH concentration. The rate constants, kOH, characterizing the formation of [Ce(dota)] and [Yb(dota)] are 2.7 × 105 and 9.3 × 107M–1 s–1, respectively. However, at pH > 7.5 the order of reaction in [OH] is higher than one. The results were interpreted in terms of rate-controlling deprotonation of the monoprotonated intermediate [Ln(Hdota)] followed by rearrangement of the deprotonated intermediate into the product. The deprotonation is a general base-catalysed process, which occurs with the assistance of a H2O molecule at pH < 7.5. At higher pH values the OH-assisted deprotonation of the intermediate, as another pathway, increases the formation rate of the complexes. By assuming these reaction pathways a general rate expression was deduced and it was shown that kOH = kHLnHL/K[hair space] HLnHLKw, where K[hair space] HLnHL is the protonation constant of the monoprotonated intermediates [Ce(Hdota)] and [Yb(Hdota)], K[hair space] HCeHL = 4.4 × 108, K[hair space] HYbHL = 2.5 × 108 and kLnHL is the rate constant, characterizing the H2O-assisted deprotonation of the intermediates, kCeHL = 18.5 and kYbHL = 245 s–1. At pH > 8 the OH-assisted deprotonation of the monoprotonated intermediate needs to be considered in the formation rates of [Ce(dota)]; the rate constant for this pathway is kOHCeHL = 1.9 × 107M–1 s–1.


References

  1. R. B. Lauffer, Chem. Rev., 1987, 87, 901 CrossRef CAS.
  2. M. F. Tweedle, in Lanthanide Probes in Life, Chemical and Earth Sciences, eds. J.-C. G. Bünzli and G. R. Choppin, Elsevier, Amsterdam, 1989, p. 127 Search PubMed.
  3. D. J. Parker, Chem. Soc. Rev., 1990, 19, 271 RSC.
  4. H. G. Britain and J. F. Desreux, Inorg. Chem., 1984, 23, 4159.
  5. S. Aime, M. Botta and G. Ermondi, Inorg. Chem., 1992, 31, 4291 CrossRef CAS.
  6. S. Hoeft and K. Roth, Chem. Ber., 1993, 126, 869 CrossRef CAS.
  7. J. Vincent and J. F. Desreux, Inorg. Chem., 1994, 33, 4048 CrossRef CAS.
  8. M.-R. Spirlet, J. Rebizant, J. F. Desreux and M.-R. Loncin, Inorg. Chem., 1984, 23, 359 CrossRef CAS.
  9. D. Parker, K. Pulukkody, F. C. Smith, A. Batsanov and J. A. K. Howard, J. Chem. Soc., Dalton Trans., 1994, 689 RSC.
  10. J. P. Dubost, J. M. Leger, M.-H. Langlois, D. Meyer and M. Schaefer, C.R. Acad. Sci. (Paris), 1991, 312, 349 Search PubMed.
  11. C. A. Chang, L. C. Francesconi, K. Kumar, M. F. Malley, J. Z. Gougoutas, M. F. Tweedle, D. W. Lee and J. G. Wilson, Inorg. Chem., 1993, 32, 3501 CrossRef CAS.
  12. S. Aime, A. Barge, M. Botta, M. Fasano, J. D. Ayala and G. Bombieri, Inorg. Chim. Acta, 1996, 246, 1 CrossRef CAS.
  13. E. Brücher, G. Laurenczy and Zs. Makra, Inorg. Chim. Acta, 1987, 139, 141 CrossRef CAS.
  14. X. Wang, T. Jin, V. Comblin, A. Lopez-mut, E. Merciny and J. F. Desreux, Inorg. Chem., 1992, 31, 1095 CrossRef CAS.
  15. M. P. M. Marques, W. D'Olieslager and C. F. Geraldes, Eur. J. Solid State Inorg. Chem., 1991, 28, 251 CAS.
  16. É. Tóth, E. Brücher, I. Lázár and I. Tóth, Inorg. Chem., 1994, 33, 4070 CrossRef CAS.
  17. S. L. Wu and W. D. Horrocks, jun., Inorg. Chem., 1995, 34, 3724 CrossRef CAS.
  18. K. Kumar and M. F. Tweedle, Inorg. Chem., 1993, 32, 4193 CrossRef CAS.
  19. K. Kumar, T. Jin, W. Xiangium, J. F. Desreux and M. F. Tweedle, Inorg. Chem., 1994, 33, 3823 CrossRef CAS.
  20. H.-Z. Cai and T. A. Kaden, Helv. Chim. Acta, 1994, 77, 383 CrossRef CAS.
  21. S. P. Kasprzyk and R. G. Wilkins, Inorg. Chem., 1982, 21, 3349 CrossRef CAS.
  22. J. C. Cassat and R. G. Wilkins, J. Am. Chem. Soc., 1968, 90, 6045 CrossRef.
  23. R. Delgado and J. J. R. F. Da Silva, Talanta, 1982, 29, 815 CrossRef CAS.
  24. C. F. Baes and R. E. Mesner, The Hydrolysis of Cations, Wiley-Interscience, New York, 1976, p. 131 Search PubMed.
  25. H. M. Irving, M. G. Miles and L. Pettit, Anal. Chim. Acta, 1967, 28, 475 CrossRef.
  26. L. Zékány and I. Nagypál, in Computational Methods for Determination of Formation Constants, eds. D. J. Legett, Plenum, New York, 1985, p. 291 Search PubMed.
  27. M. F. Loncin, J. F. Desreux and E. Merciny, Inorg. Chem., 1986, 25, 2646 CrossRef CAS.
  28. W. P. Cacheris, S. K. Nickle and A. D. Sherry, Inorg. Chem., 1987, 26, 958 CrossRef CAS.
  29. E. T. Clarke and A. E. Martell, Inorg. Chim. Acta, 1991, 190, 37 CrossRef CAS.
  30. É. Tóth and E. Brücher, Inorg. Chim. Acta, 1994, 221, 165 CrossRef CAS.
  31. K. Kumar, C. A. Chang, L. C. Francesconi, D. D. Dischino, M. F. Malley, J. Z. Gougoutas and M. F. Tweedle, Inorg. Chem., 1994, 33, 3567 CrossRef CAS.
  32. J. F. Desreux, E. Merciny and M. F. Loncin, Inorg. Chem., 1981, 20, 987 CrossRef CAS.
  33. M. T. Beck and I. Nagypál, Chemistry of Complex Equilibria, Akadémiai Kiadó, Budapest and Ellis Horward, Chichester, 1990, p. 198 Search PubMed.
  34. E. Brücher and A. D. Sherry, Inorg. Chem., 1990, 29, 1555 CrossRef CAS.
  35. M. Eigen, Angew. Chem., Int. Ed. Engl., 1964, 3, 1 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.