The electrochemistry of tetramesityldisilene, Mes2Si[double bond, length half m-dash]SiMes2

(Note: The full text of this document is currently only available in the PDF Version )

Zeng-Rong Zhang and James Y. Becker


Abstract

The outcome of the controlled potential oxidation and reduction of a disilene, tetramesityldisilene (TMDS), indicates that the main silicon containing products involve only one silicon atom and have the general structure Mes2SiX(Y), X and Y being H, OH or F.


References

  1. R. West, M. J. Fink and J. Michl, Science, 1981, 214, 1343 CAS.
  2. R. Okazaki and R. West, Adv. Organomet. Chem., 1996, 39, 231 CAS.
  3. G. Raabe and J. Michl, Chem. Rev., 1985, 85, 419 CrossRef CAS; G. Raabe and J. Michl, in The Chemistry of Organic Silicon Compounds, ed. S. Patai and Z. Rappoport, Wiley, New York, 1989, pp. 1015–1142.
  4. R. West, Angew. Chem., Int. Ed. Engl., 1987, 26, 1201 CrossRef; R. West, in The Chemistry of Inorganic Ring Systems, ed. R. Steudel, Elsevier, Amsterdam, Netherlands, 1992, pp. 35–50 Search PubMed.
  5. T. Tsumuraya, S. A. Batcheller and S. Masamune, Angew. Chem., Int. Ed. Engl., 1991, 30, 902 CrossRef.
  6. M. Weidenbruch, Coord. Chem. Rev., 1994, 130, 275 CrossRef CAS.
  7. B. D. Shepherd and R. West, Chem. Lett., 1988, 183 CAS.
  8. H. B. Yokelson, A. J. Millevolte, G. R. Gillette and R. West, J. Am. Chem. Soc., 1987, 109, 6865 CrossRef CAS.
  9. H. B. Yokelson, A. J. Millevolte, B. R. Adams and R. West, J. Am. Chem. Soc., 1987, 109, 4116 CrossRef CAS; K. L. McKillop, G. R. Gillette, D. R. Powell and R. West, J. Am. Chem. Soc., 1992, 114, 5203 CrossRef CAS.
  10. H. Watanabe, K. Takeuchi, K. Nakajima, Y. Nagai and M. Goto, Chem. Lett., 1988, 1343 CAS; A. J. Millevolte, D. R. Powell, S. G. Johnson and R. West, Organometallics, 1992, 11, 1091 CrossRef CAS.
  11. All experiments were carried out in a drybox ([H2O] < 1 ppm; [O2] < 1 ppm), employing controlled potential electrolysis (on Pt) in an ‘H’ type two-compartment cell and pulsing from 0 to 0.5 V (vs. Ag wire) every 0.5 s. Typically, the working compartment contained 0.1–0.2 mmol of disilene dissolved in 25 ml solution. Electricity consumption is ca. 1 F mol–1. Solvents MeCN and THF were distilled over P2O5 and benzophenone/Na, respectively. All electrolytes were dried under vacuum (ca. 30 mmHg) at 105 °C for 48 h. HRMS results for MH+: Found (calc. for M). 1: 305.1547 (305.1547 for C18H23F2Si); 2: 287.1620 (287.1640 for C18H24FSi); 3: 303.1590 (303.1595 for C18H24FOSi); 4: 269.1733 (269.1745 for C18H25Si); 5: 285.1500 (285.1694 for C18H25OSi); 6: 301.1420 (301.1643 for C18H25O2Si); 7: 120.0910 (120.0948 for C9H12); 8: 470.2155 (470.2120 for C27H33F3Si2).
  12. The chemical reduction of sterically congested disilenes by alkali metals has not been studied. Formation of disilene anion radicals is reported to result from reductions of the corresponding dichlorodisilenes by alkali metals,13 but to the best of our knowledge there is no report on the nature of products obtained by reaction/decomposition of this type of anion radical.
  13. M. Weidenbruch, K. Kramer, A. Schafer and J. K. Blum, Chem. Ber., 1985, 118, 107 CAS; M. Weidenbruch, K. Kramer, K. Peters and H. G. von Schnering, Z. Naturforsch., Teil B, 1985, 40, 601 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.