Enantioselective intramolecular cyclizations of prochiral cyclohexanones using chiral lithium amide bases

(Note: The full text of this document is currently only available in the PDF Version )

Jeffrey E. Kropf and Steven M. Weinreb


Abstract

The first examples of intramolecular cyclizations of prochiral cyclohexanones with chiral lithium amide bases have been effected in good yields and enantiomeric ratios.


References

  1. (a) For reviews, see: K. Koga, J. Synth. Org. Chem. Jpn., 1990, 48, 463 Search PubMed; (b) P. J. Cox and N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1 CrossRef CAS; (c) K. Koga, Pure Appl. Chem., 1994, 66, 1487 CrossRef CAS; (d) K. Koga and M. Shindo, J. Synth. Org. Chem. Jpn., 1995, 53, 1021 Search PubMed; (e) N. S. Simpkins, Pure Appl. Chem., 1996, 68, 691 CAS; (f) P. O'Brien, J. Chem. Soc., Perkin Trans. 1, 1998, 1439 RSC.
  2. The large majority of the work on enantioselective deprotonation of prochiral ketones using chiral lithium amide bases involves trapping the resulting enolates as silyl enol ethers: K. Aoki and K. Koga, Tetrahedron Lett., 1997, 38, 2505 Search PubMed; R. Shirai, D. Sato, K. Aoki, M. Tanaka, H. Kawasaki and K. Koga, Tetrahedron, 1997, 53, 5963 CrossRef CAS; H. Chatani, M. Nakajima, H. Kawasaki and K. Koga, Heterocycles, 1997, 46, 53 CrossRef CAS; K. Aoki, K. Tomioka, H. Noguchi and K. Koga, Tetrahedron, 1997, 53, 13 641 CAS.
  3. In addition, chiral lithium amide bases have beeen successfully used for the enantioselective rearrangement of epoxides (ref. 4), aromatic and benzylic functionalization of aryl chromium complexes (ref. 5), as well as the asymmetric [2,3]-Wittig rearrangement (ref. 6).
  4. M. Asami, J. Synth. Org. Chem. Jpn., 1996, 54, 188 Search PubMed; D. M. Hodgson, A. R. Gibbs and G. P. Lee, Tetrahedron, 1996, 52, 14 361 CrossRef CAS.
  5. R. A. Ewin, A. M. MacLeod, D. A. Price, N. S. Simpkins and A. P. Watt, J. Chem Soc., Perkin Trans. 1, 1997, 401 RSC.
  6. S. E. Gibson, P. Ham and G. R. Jefferson, Chem. Commun., 1998, 123 RSC.
  7. Iodo ketone 1 was synthesized from 4-(3-chloropropyl) cyclohexanone (cf.A. G. Schultz and J. P. Dittami, J. Org. Chem., 1984, 49, 2615) by a Finkelstein reaction (NaI, acetone, 90%) Search PubMed.
  8. Iodo ketone 2 was prepared from 4-(2-hydroxyethyl) cyclohexanone (M. A. Ciufolini and N. E. Byrne, J. Am. Chem. Soc., 1991, 113, 8016) using PPh3 and I2(60%) Search PubMed.
  9. The amine is available commercially as the hydrochloride salt.
  10. R. Shirai, K. Aoki, D. Sato, H.-D. Kim, M. Murakata, T. Yasukata and K. Koga, Chem. Pharm. Bull., 1994, 42, 690 CAS.
  11. K. Bambridge, M. J. Begley and N. S. Simpkins, Tetrahedron Lett., 1994, 35, 3391 CrossRef CAS.
  12. The absolute stereochemistry of bicyclic ketones 3 and 4 was determined using the CD Octant rule. For a good discussion, see: E. L. Eliel and S. H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994, p. 1022 Search PubMed.
  13. Racemic ketone 3 is commercially available. Racemic 4: E. N. Marvell, D. Sturmer and C. Rowell, Tetrahedron, 1966, 22, 861 Search PubMed.
  14. K. Sugasawa, M. Shindo, H. Noguchi and K. Koga, Tetrahedron Lett., 1996, 37, 7377 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.