Enantioselective intramolecular cyclizations of prochiral cyclohexanones using chiral lithium amide bases
(Note: The full text of this document is currently only available in the PDF Version )
Jeffrey E. Kropf and Steven M. Weinreb
Abstract
The first examples of intramolecular cyclizations of prochiral cyclohexanones with chiral lithium amide bases have been effected in good yields and enantiomeric ratios.
References
(a) For reviews, see: K. Koga, J. Synth. Org. Chem. Jpn., 1990, 48, 463 Search PubMed;
(b) P. J. Cox and N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1 CrossRefCAS;
(c) K. Koga, Pure Appl. Chem., 1994, 66, 1487 CrossRefCAS;
(d) K. Koga and M. Shindo, J. Synth. Org. Chem. Jpn., 1995, 53, 1021 Search PubMed;
(e) N. S. Simpkins, Pure Appl. Chem., 1996, 68, 691 CAS;
(f) P. O'Brien, J. Chem. Soc., Perkin Trans. 1, 1998, 1439 RSC.
The large majority of the work on enantioselective deprotonation of prochiral
ketones using chiral lithium amide bases involves trapping the
resulting enolates as silyl enol ethers: K. Aoki and K. Koga, Tetrahedron Lett., 1997, 38, 2505 Search PubMed; R. Shirai, D. Sato, K. Aoki, M. Tanaka, H. Kawasaki and K. Koga, Tetrahedron, 1997, 53, 5963 CrossRefCAS; H. Chatani, M. Nakajima, H. Kawasaki and K. Koga, Heterocycles, 1997, 46, 53 CrossRefCAS; K. Aoki, K. Tomioka, H. Noguchi and K. Koga, Tetrahedron, 1997, 53, 13 641 CAS.
In addition, chiral lithium amide bases have beeen successfully used for
the enantioselective rearrangement of epoxides (ref. 4), aromatic and
benzylic functionalization of aryl chromium complexes (ref. 5), as well
as the asymmetric [2,3]-Wittig rearrangement (ref.
6).
M. Asami, J. Synth. Org. Chem. Jpn., 1996, 54, 188 Search PubMed; D. M. Hodgson, A. R. Gibbs and G. P. Lee, Tetrahedron, 1996, 52, 14 361 CrossRefCAS.
R. A. Ewin, A. M. MacLeod, D. A. Price, N. S. Simpkins and A. P. Watt, J. Chem Soc., Perkin Trans. 1, 1997, 401 RSC.
S. E. Gibson, P. Ham and G. R. Jefferson, Chem. Commun., 1998, 123 RSC.
Iodo ketone 1 was synthesized from 4-(3-chloropropyl) cyclohexanone (cf.A. G. Schultz and
J. P. Dittami,
J. Org. Chem.,
1984,
49,
2615)
by a Finkelstein reaction (NaI, acetone,
90%) Search PubMed.
Iodo ketone 2 was prepared from 4-(2-hydroxyethyl) cyclohexanone
(M. A. Ciufolini and
N. E. Byrne,
J. Am. Chem. Soc.,
1991,
113,
8016) using PPh3 and I2(60%) Search PubMed.
The amine is available commercially as the hydrochloride
salt.
R. Shirai, K. Aoki, D. Sato, H.-D. Kim, M. Murakata, T. Yasukata and K. Koga, Chem. Pharm. Bull., 1994, 42, 690 CAS.
K. Bambridge, M. J. Begley and N. S. Simpkins, Tetrahedron Lett., 1994, 35, 3391 CrossRefCAS.
The absolute stereochemistry of bicyclic ketones 3
and 4 was determined using the CD Octant rule. For a good discussion, see:
E. L. Eliel and
S. H. Wilen,
Stereochemistry of Organic Compounds,
Wiley,
New York,
1994,
p. 1022 Search PubMed.
Racemic ketone 3 is commercially available. Racemic 4: E. N. Marvell, D. Sturmer and C. Rowell, Tetrahedron, 1966, 22, 861 Search PubMed.
K. Sugasawa, M. Shindo, H. Noguchi and K. Koga, Tetrahedron Lett., 1996, 37, 7377 CrossRefCAS.
Click here to see how this site uses Cookies. View our privacy policy here.