A new strategy for the elaboration of pyrrolidine N-oxides using the reverse-Cope elimination

(Note: The full text of this document is currently only available in the PDF Version )

Jane R. Hanrahan and David W. Knight


Abstract

Condensations of the unsaturated nitrones 13 with lithiated methyl phenyl sulfone provide excellent yields of the unsaturated hydroxylamines 14 as single stereoisomers, which undergo rapid reverse-Cope elimination at ambient temperature, assisted by the constraint of the acetonide ring, leading to the pyrrolidine N-oxides 15 as single enantiomers.


References

  1. H. O. House, D. T. Manning, D. G. Melillo, L. F. Lee, O. R. Haynes and B. E. Wilkes, J. Org. Chem., 1976, 41, 855 CrossRef CAS; H. O. House and L. F. Lee, J. Org. Chem., 1976, 41, 863 CrossRef CAS.
  2. D. St. C. Black and J. E. Doyle, Aust. J. Chem., 1978, 31, 2317 CAS.
  3. W. Oppolzer, S. Siles, R. L. Snowden, B. H. Bakker and M. Petrzilka, Tetrahedron Lett., 1979, 4391 CrossRef CAS.
  4. E. Ciganek, J. Org. Chem., 1995, 60, 5803 CrossRef CAS; E. Ciganek, J. M. Read and J. C. Calabrese, J. Org. Chem., 1995, 60, 5795 CrossRef CAS.
  5. W. Oppolzer, A. C. Spivey and C. G. Bochet, J. Am. Chem. Soc., 1994, 116, 3139 CrossRef CAS For a theoretical study of the reverse-Cope elimination see: I. Komaromi and J. M. J. Tronchet, J. Phys. Chem. A., 1997, 101, 3554 Search PubMed.
  6. A. B. Holmes, J. Collins, E. C. Davison, A. J. Rudge, T. C. Stork and J. A. Warner, Pure Appl. Chem., 1997, 69, 531 CrossRef CAS; E. C. Davison, I. T. Forbes, A. B. Holmes and J. A. Warner, Tetrahedron, 1996, 52, 11601 CrossRef CAS and references cited therein.
  7. K. E. Bell, M. P. Coogan, M. B. Gravestock, D. W. Knight and S. R. Thornton, Tetrahedron Lett., 1997, 38, 8545 CrossRef CAS; M. P. Coogan, M. B. Gravestock, D. W. Knight and S. R. Thornton, Tetrahedron Lett., 1997, 38, 8549 CrossRef CAS; D. W. Knight, M. P. Leese and A. R. Wheildon, Tetrahedron Lett., 1997, 38, 8553 CrossRef.
  8. T. V. RajanBabu, W. A. Nujent, D. F. Taber and P. J. Fagan, J. Am. Chem. Soc., 1988, 110, 7128 CrossRef CAS.
  9. A. Dondoni, F. Junquera, F. L. Merchán, P. Merino and T. Tejero, Tetrahedron Lett., 1992, 33, 4221 CrossRef CAS; A. Dondoni, F. Junquera, F. L. Merchán, P. Merino, M.-C. Scherrmann and T. Tejero, J. Org. Chem., 1997, 62, 5484 CrossRef CAS.
  10. Selected data for 15a: [α]D20+16.1 (c 0.51, CH2Cl2), δH(CDCl3) 1.18 (3H, s, CH3), 1.41 (3H, s, CH3), 1.48, (3H, d, J 6.5, 5-CH3), 2.95 (3H, s, N-CH3), 3.25 (1H, dq, J 6.5 and 6.5, 5-H), 3.52 (1H, dd, J 15.0 and 6.5, CHaHbSO2), 3.85 (1H, ddd, J 9.0, 6.5 and 4.0, 2-H), 4.05 (1H, dd, J 15.0 and 4.0, CHaHbSO2), 4.50 (2H, m, 3- and 4-H), 7.35–7.50 (3H, m, ArH) and 7.80 (2H, m, ArH)δC(CDCl3) 11.4 (5-CH3), 25.1 (CH3), 27.4 (CH3), 53.1 (N-CH3), 55.0 (CH2SO2), 77.0 (2-CH), 78.4 (5-CH), 83.1 [3(4)-CH], 83.4 [4(3)-CH], 115.5 (OCO), 128.6 and 129.8 (both 2 × ArCH), 134.7 (ArCH) and 139.5 (ArC); m/z[ES] 342 (M++ H, 100%)[Found: M++ H, 342.1375. C16H23NO5S requires M, 342.1375]. Selected NOE data: 2-H/5-H (5.9%) 2-H/N-Me (2.6%) 5-H/N-Me (2.3%); 5- Me/N-Me (< 1%); N-Me/CH2SO2(< 1%).
Click here to see how this site uses Cookies. View our privacy policy here.