Sigmatropic migrations in cyclononatetraenyl(dipropyl)borane: a combined experimental and computational study

(Note: The full text of this document is currently only available in the PDF Version )

Ilya D. Gridnev, Yuri N. Bubnov, Peter R. Schreiner, Mikhail E. Gurskii, Anatoli O. Krasavin and Vadim I. Mstislavski


Abstract

Large-ring sigmatropic migrations do not necessarily follow the ‘least motion principle’ and can only be rationalized by a combination of experimental and computational techniques.


References

  1. R. B. Woodward and R. Hoffmann, Angew. Chem., 1969, 81, 797.
  2. For reviews see: R. B. Larrabee, J. Organomet. Chem., 1974, 74, 313 Search PubMed; C. W. Spangler, Chem. Rev., 1976, 76, 187 CrossRef CAS; P. Jutzi, Chem. Rev., 1986, 86, 983 CrossRef CAS.
  3. M. Stradiotto, D. W. Hughes, A. D. Bain, M. A. Brook and M. J. McGlinchey, Organometallics, 1997, 16, 5563 CrossRef CAS and references cited therein.
  4. B. E. Mann, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, Pergamon, Oxford, 1982, vol. 3, pp. 89–125 Search PubMed; A. Bonny and S. R. Stobart, J. Chem. Soc., Dalton Trans., 1979, 486 Search PubMed.
  5. R. B. Larrabee, J. Am. Chem. Soc, 1971, 93, 1510 CrossRef CAS; M. D. Curtis and R. Fink, J. Organomet. Chem., 1972, 38, 299 CrossRef CAS; B. E. Mann, B. F. Taylor, N. A. Taylor and R. Wood, J. Organomet. Chem., 1978, 162, 137 CrossRef CAS.
  6. (a) I. D. Gridnev, O. L. Tok, M. E. Gurskii and Y. N. Bubnov, Chem. Eur. J., 1996, 2, 1483 CAS; (b) I. D. Gridnev, O. L. Tok, N. A. Gridneva, Y. N. Bubnov and P. R. Schreiner, J. Am. Chem. Soc., 1998, 120, 1034 CrossRef CAS.
  7. M. E. Gurskii, I. D. Gridnev, A. V. Buevich and Y. N. Bubnov, Organometallics, 1994, 13, 4658 CrossRef CAS.
  8. The lineshapes were calculated utilizing a self-written computer program designed for direct iterative search of the activation parameters from the whole set of experimental spectra as proposed by R. Laatikainen, J. Magn. Res., 1985, 64, 375 Search PubMed; Iterations were made for two independent NMR operating frequencies (50 and 100 MHz for 13C, Fig. 2; temperature calibration was carried out using a standard calibration sample (4% MeOH in [2H4]MeOH), providing an approximate accuracy of ±1 K. Temperature coefficients of the chemical shifts were determined by spatial iteration cycles where they were regarded as variable parameters. Linear coefficients were found to be approximately 1 Hz K–1 for C-1–4 and 2 Hz K–1 for C-5; second order coefficients were less than 0.001 Hz K–2 CAS.
  9. P. Pulay, in Modern Theoretical Chemistry, ed. H. F. Schaefer III, Plenum, New York, 1977, vol. 4, p.153 Search PubMed.
  10. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, OUP, New York, 1989 Search PubMed.
  11. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  12. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785 CrossRef CAS.
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision B.3, Gaussian, Inc., Pittsburgh PA, 1995.
  14. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS.
  15. W. J. Hehre, L. Radom, P. v. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley Interscience, New York, 1986 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.