Metal catalyst-free by design. The synthesis of amides from alkyl iodides, carbon monoxide and amines by a hybrid radical/ionic reaction

(Note: The full text of this document is currently only available in the PDF Version )

Ilhyong Ryu, Kiyoto Nagahara, Nobuaki Kambe, Noboru Sonoda, Sergio Kreimerman and Mitsuo Komatsu


Abstract

Amides can be synthesized from alkyl iodides and amines in the presence of CO (20–25 atm), without using transition metal catalyst; the radical cascade is initiated thermally using AIBN and allyltributyltin.


References

  1. For recent progress in the efficient recovery of catalysts including fluorous biphasic systems, see J. A. Gladysz, Science, 1994, 266, 55 Search PubMed; I. T. Horváth and J. Rábai, Science, 1994, 266, 72 CAS; J. J. J. Juliette, I. T. Horváth and J. A. Gladysz, Angew. Chem., Int. Ed. Engl., 1997, 36, 1610 CrossRef CAS Also see a related review: D. P. Curran, Angew. Chem., Int. Ed., 1998, 37, 1174 CrossRef.
  2. K. Nagahara, I. Ryu, M. Komatsu and N. Sonoda, J. Am. Chem. Soc., 1997, 119, 5465 CrossRef CAS.
  3. General procedure: A magnetic stirring bar, AIBN (0.3 mmol), hexane (0.5 ml), allyltributyltin (0.1 mmol), alkyl iodide 1a(1 mmol), triethylamine (1.3 mmol) and amine (1.2 mmol) were placed in a 50 ml stainless steel autoclave with a glass liner. The autoclave was closed, purged twice with CO, pressurized with 25 atm of CO and then heated with stirring at 80 °C for 8 h. Excess CO was discharged at room temperature. Washing the crude mixture with MeCN (10 ml) followed by precipitation of ammonium salts in Et2O (40 ml), filtration, evaporation of filtrate and column chromatography on silica gel gave pure amide 2.
  4. Rapid decarbonylation rates (105 to 106 s–1 at room temp.) of pivaloyl radical are known, see: Y. P. Tsentalovich and H. Fischer, J. Chem. Soc., Perkin Trans. 2, 1994, 729 Search PubMed; C. E. Brown, A. G. Neville, D. M. Rayner, K. U. Ingold and L. Lusztyk, Aust. J. Chem., 1995, 48, 363 RSC; C. Chatgilialoglu, C. Ferreri, M. Lucarini, P. Pedrielli and G. F. Pedulli, Organometallics, 1995, 14, 2672 CAS.
  5. I. Ryu and N. Sonoda, Angew. Chem., Int. Ed. Engl., 1996, 35, 1050 CrossRef.
  6. P. Renaud, E. Lacôte and L. Quaranta, Tetrahedron Lett., 1998, 39, 2123 CrossRef CAS.
  7. Reaction of primary alkyl iodides under thermal initiation conditions suffers from direct aminolysis.
  8. For examples of amide synthesis by catalytic carbonylation, see A. Schoenberg and R. F. Heck, J. Org. Chem., 1974, 39, 3327 Search PubMed; T. Kobayashi and M. Tanaka, J. Organomet. Chem., 1982, 231, C12 CrossRef CAS; T. Kobayashi and M. Tanaka, J. Organomet. Chem., 1982, 233, C64 CrossRef CAS; F. Ozawa, H. Soyama, T. Yamamoto and A. Yamamoto, Tetrahedron Lett., 1982, 23, 3383 CrossRef CAS; T. Kondo, Y. Sone, Y. Tsuji and Y. Watanabe, J. Organomet. Chem., 1994, 473, 163 CrossRef CAS Also see a related review: A. Yamamoto, Bull. Chem. Soc. Jpn., 1995, 68, 433 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.