Stereoselective sulfoxidation of α-mannopyranosyl thioglycosides: the exo-anomeric effect in action

(Note: The full text of this document is currently only available in the PDF Version )

David Crich, Jan Mataka, Sanxing Sun, Donald J. Wink, K.-C. Lam and Arnold L. Rheingold


Abstract

As a consequence of the exo-anomeric effect, and in contrast to their β-anomers, α-thioglycosides undergo stereoselective oxidation to give very predominantly the R-sulfoxides, as revealed by X-ray crystallography.


References

  1. R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi, K. Sekanina, N. Horan, J. Gildersleeve, C. Thompson, A. Smith, K. Biswas, W. C. Still and D. Kahne, Science, 1996, 274, 1520 CrossRef CAS.
  2. D. Kahne, S. Walker, Y. Cheng and D. V. Engen, J. Am. Chem. Soc., 1989, 111, 6881 CrossRef CAS.
  3. L. Yan and D. Kahne, J. Am. Chem. Soc., 1996, 118, 9239 CrossRef CAS.
  4. R. Kakarla, R. G. Dulina, N. T. Hatzenbuhler, Y. W. Hui and M. J. Sofia, J. Org. Chem., 1996, 61, 8347 CrossRef CAS.
  5. However we note that the two unprotected β-galactosyl phenyl sulfoxides are hydrolyzed at different rates by aqueous TfOH, presumably due to differential intramolecular hydrogen bonding interactions: N. Khiar, I. Alonso, N. Rodriguez, A. Fernandez-Mayorales, J. Jimenez-Barbero, O. Nieto, F. Cano, C. Foces-Foces and M. Martin-Lomas, Tetrahedron Lett., 1997, 38, 8267 Search PubMed.
  6. D. Crich and S. Sun, Tetrahedron, 1998, 54, 8321 CrossRef CAS.
  7. D. Crich and S. Sun, J. Org. Chem., 1996, 61, 4506 CrossRef CAS.
  8. D. Crich and S. Sun, J. Org. Chem., 1997, 62, 1198 CrossRef CAS.
  9. D. Crich and S. Sun, J. Am. Chem. Soc., 1997, 119, 11217 CrossRef CAS.
  10. D. Crich, S. Sun and J. Brunckova, J. Org. Chem., 1996, 61, 605 CrossRef.
  11. D. Crich and Z. Dai, Tetrahedron Lett., 1998, 53, 1681 CrossRef CAS.
  12. A further unassigned example of diastereoselective sulfoxidation of an α-mannosyl thioglycoside: G. Stork and J. J. La Clair, J. Am. Chem. Soc., 1996, 118, 247 Search PubMed.
  13. C. R. Johnson and D. McCants, J. Am. Chem. Soc., 1965, 87, 1109 CrossRef CAS.
  14. E. Juaristi and G. Cuevas, The Anomeric Effect, CRC Press, Boca Raton, 1995 Search PubMed.
  15. P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon, Oxford, 1983 Search PubMed.
  16. A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer-Verlag, Berlin, 1983 Search PubMed.
  17. Crystal data for 20: C14H24O6S, M= 320.39, monoclinic, a= 11.282(7), b= 9.766(10), c= 15.555(12)Å, β= 99.73(6)°, V= 1689(2)Å3; P21, Z= 4 (two independent molecules per asymmetric unit), µ= 0.22 mm–1. Of 3381 reflections measured at room temperature, 3163 independent reflections were used in refinement on F2. Final agreement factors for 390 least-squares parameters for 1887 data with I > 2 σ(I)(with values for all independent reflections in parentheses): R= 0.0412 (0.0830), Rw= 0.0984 (0.1217), GOF = 1.032 (1.131). For 22: C15H20O6S, M= 328.37, monoclinic, a= 5.1509(2), b= 12.9187(4), c= 11.4762(5), β= 95.554(2)°, V= 760.07(8)Å3, P21, Z= 2. µ= 0.24 mm–1. Of 2613 reflections measured at T= 173 K, there were 1718 independent reflections used in refinement against F2 with 1551 having I > 2σ(I). Final agreement factors for 199 least-squares parameters (with values for all independent reflections in parentheses): R= 0.0864 (0.1039), wR2 = 0.2847 (0.2582), GOF = 2.415 (2.414). CCDC 182/1088. The crystallographic data is available as a .cif file: see http://www.rsc.org/suppdata/cc/1998/2763/.
Click here to see how this site uses Cookies. View our privacy policy here.