‘Oxo-hydroxo tautomerism’ as useful mechanistic tool in oxygenation reactions catalysed by water-soluble metalloporphyrins

(Note: The full text of this document is currently only available in the PDF Version )

Jean Bernadou and Bernard Meunier


Abstract

High valent metal–oxo species have been evoked as active intermediates in many different oxidation reactions using manganese or iron porphyrin complexes as catalysts and oxygen atom donors (H2O2, PhIO, NaOCl, KHSO5, ... etc.) or dioxygen associated to a reductant as oxygen atom source. When these metalloporphyrin-catalysed oxidations are performed in water, such metal–oxo species are able to transfer an oxygen atom coming from either the oxygen source or from bulk water. This fact has been explained by the so-called oxo–hydroxo tautomerism, a mechanism involving a rapid shift of two electrons and one proton from a hydroxo ligand (electron-rich ligand formed by deprotonation of an aqua ligand) to the trans oxo species (electron-poor ligand) leading to the transformation of the hydroxo ligand into an electrophilic oxo entity on the opposite side of the initial oxo. This ‘oxo–hydroxo tautomerism’, evidenced by using 18O-labelled water, has been used as mechanistic tool to unambiguously characterize oxygen atom transfer mechanisms mediated by metal–oxo species in opposition to mechanisms related to free radical oxidation reactions.


References

  1. Cytochrome P-450: Structure, Mechanism and Biochemistry, ed. P. R. Ortiz de Montellano, Plenum Press, New York, 2nd edn., 1995 Search PubMed.
  2. Peroxidases in Chemistry and Biology, ed. J. Everse, K. E. Everse and M. B. Grisham, CRC Press, Boca Raton, FL, 1991, vol. I and II Search PubMed.
  3. J. T. Groves, R. C. Haushalter, M. Nakamura, T. E. Nemo and B. J. Evans, J. Am. Chem. Soc., 1981, 103, 2884 CrossRef CAS.
  4. O. Bortolini, M. Ricci, B. Meunier, P. Friant, I. Ascone and J. Goulon, New J. Chem., 1986, 10, 39 Search PubMed.
  5. (a) B. Meunier, Chem. Rev., 1992, 92, 1411 CrossRef CAS; (b) J. T. Groves and Y. Z. Han, in ref. 1, pp. 3–48.
  6. T. C. Bruice, Acc. Chem. Res., 1991, 24, 243 CrossRef CAS; T. G. Traylor, Pure Appl. Chem., 1991, 63, 265 CAS; D. Mansuy, Coord. Chem. Rev., 1993, 125, 129 CrossRef CAS.
  7. P. M. Champion, J. Am. Chem. Soc., 1989, 111, 3433 CrossRef CAS.
  8. F. Lichtenberger, W. Nastainczyk and V. Ullrich, Biochem. Biophys. Res. Commun., 1976, 70, 936 CrossRef.
  9. J. T. Groves, T. E. Nemo and R. S. Myers, J. Am. Chem. Soc., 1979, 101, 1032 CrossRef CAS.
  10. E. Guilmet and B. Meunier, Tetrahedron Lett., 1980, 21, 4449 CrossRef CAS.
  11. B. De Poorter and B. Meunier, J. Chem. Soc., Perkin Trans. 2, 1985, 1735 RSC.
  12. J. P. Renaud, P. Battioni, J. F. Bartoli and D. Mansuy, J. Chem. Soc., Chem. Commun., 1985, 888 RSC.
  13. S. Shaik, M. Filatov, D. Schröder and H. Schwarz, Chem. Eur. J., 1998, 4, 193 CrossRef CAS.
  14. A. Ghosh, J. Almlöf and L. Que, J. Phys. Chem., 1994, 98, 5576 CrossRef CAS.
  15. J. E. Penner-Hahn, K. S. Eble, T. J. McMurry, M. Renner, A. L. Balch, J. T. Groves, J. H. Dawson and K. O. Hodgson, J. Am. Chem. Soc., 1986, 108, 7819 CrossRef.
  16. K. J. Paeng and J. R. Kincaid, J. Am. Chem. Soc., 1988, 110, 7913 CrossRef CAS.
  17. W. J. Chuang and H. E. Wart, J. Biol. Chem., 1992, 267, 13 293 CAS.
  18. M. J. Benecky, J. E. Frew, N. Scowen, P. Jones and B. M. Hoffman, Biochemistry, 1993, 32, 11 929 CrossRef CAS.
  19. P. R. Ortiz de Montellano, Y. S. Choe, G. DePillis and C. E. Catalano, J. Biol. Chem., 1987, 262, 11 641 CAS.
  20. P. R. Ortiz de Montellano and L. A. Grab, Biochemistry, 1987, 26, 5310 CrossRef CAS.
  21. K. Ayougou, D. Mandon, J. Fisher, R. Weiss, M. Müther, V. Schünemann, A. X. Trautwein, E. Bill, J. Terner, K. Jayaraj, A. Gold and R. N. Austin, Chem. Eur. J., 1996, 2, 1159 CAS.
  22. (a) D.-H. Chin, A. L. Balch and G. N. La Mar, J. Am. Chem. Soc., 1980, 102, 1446 CrossRef CAS; (b) A. L. Balch, Y.-W. Chan, R.-J. Cheng, G. N. La Mar, L. Latos-Grazynski and M. W. Renner, J. Am. Chem. Soc., 1984, 106, 7779 CrossRef CAS; (c) J. T. Groves, Z. Gross and M. Stern, Inorg. Chem., 1994, 33, 5065 CrossRef CAS.
  23. K. Ayougou, E. Bill, J. M. Charnock, C. D. Garner, D. Mandon, A. X. Trautwein, R. Weiss and H. Winkler, Angew. Chem., Int. Ed. Engl., 1995, 34, 343 CrossRef CAS.
  24. J. T. Groves, J. Lee and S. S. Marla, J. Am. Chem. Soc., 1997, 119, 6269 CrossRef CAS.
  25. K. Machii, Y. Watanabe and I. Morishima, J. Am. Chem. Soc., 1995, 117, 6691 CrossRef CAS.
  26. M. F. Sisemore, J. N. Burstyn and J. S. Valentine, Angew. Chem., Int. Ed. Engl., 1996, 35, 206 CrossRef CAS.
  27. W. Adam, D. Golsch and F. C. Görth, Chem. Eur. J., 1996, 2, 255 CAS.
  28. T. J. Collins and S. W. Gordon-Wylie, J. Am. Chem. Soc., 1989, 111, 4511 CrossRef CAS.
  29. T. J. Collins, Acc. Chem. Res., 1994, 27, 279 CrossRef CAS.
  30. L. A. Bottomley and F. L. Neely, Inorg. Chem., 1997, 36, 5435 CrossRef CAS.
  31. J. Du Bois, C. S. Tomooka, J. Hason and E. M. Carreira, Acc. Chem. Res., 1997, 30, 364 CrossRef CAS.
  32. The denomination ‘oxo–hydroxo tautomerism’ which is reminiscent of the keto-enol tautomerism appears to be more precise than ‘redox tautomerism’ that we initially proposed.33.
  33. J. Bernadou, A. S. Fabiano, A. Robert and B. Meunier, J. Am. Chem. Soc., 1994, 116, 9375 CrossRef CAS.
  34. K. U. Ingold and P. A. MacFaul, in Biomimetic Oxidations Catalysed by Transition Metals, ed. B. Meunier, World Scientific Publishing, Singapore, 1998, ch. 2, in press Search PubMed.
  35. W. Nam and J. S. Valentine, J. Am. Chem. Soc., 1993, 115, 1772 CrossRef CAS and references therein.
  36. B. Meunier, E. Guilmet, M. E. De Carvalho and R. Poilblanc, J. Am. Chem. Soc., 1984, 106, 6668 CrossRef CAS.
  37. A. Robert and B. Meunier, New J. Chem., 1988, 12, 885 Search PubMed.
  38. S. Hashimoto, Y. Tatsuno and T. Kitagawa, Proc. Natl. Acad. Sci. USA, 1986, 83, 2417 CAS.
  39. R. Makino, T. Uno, Y. Nishimura, T. Iizuka, M. Tsuboi and Y. Ishimura, J. Biol. Chem., 1986, 261, 8376 CAS.
  40. S. Hashimoto, Y. Tatsuno and T. Kitagawa, J. Am. Chem. Soc., 1987, 109, 8096 CrossRef CAS.
  41. J. T. Groves and M. K. Stern, J. Am. Chem. Soc., 1987, 109, 3812 CrossRef CAS.
  42. J. T. Groves and M. K. Stern, J. Am. Chem. Soc., 1988, 110, 8628 CrossRef CAS.
  43. R. J. Balahura, A. Sorokin, J. Bernadou and B. Meunier, Inorg. Chem., 1997, 36, 3488 CrossRef CAS.
  44. K. A. Lee and W. Nam, J. Am. Chem. Soc., 1997, 119, 1916 CrossRef CAS.
  45. M. Pitié, J. Bernadou and B. Meunier, J. Am. Chem. Soc., 1995, 117, 2935 CrossRef CAS.
  46. R. Song, A. Sorokin, J. Bernadou and B. Meunier, J. Org. Chem., 1997, 62, 673 CrossRef CAS.
  47. S. J. Yang and W. Nam, Inorg. Chem., 1998, 37, 606 CrossRef CAS.
  48. S. Prince, F. Körber, P. R. Cooke, J. R. Lindsay Smith and M. A. Mazid, Acta Crystallogr., Sect. C, 1993, 49, 1158 CrossRef.
  49. S. Jeon and T. C. Bruice, Inorg. Chem., 1992, 31, 4843 CrossRef CAS.
  50. A. Sorokin and B. Meunier, Eur. J. Inorg. Chem., in press Search PubMed.
  51. W. Nam, W. Hwang, J. M. Ahn, S.-Y. Yi and G.-J. Jhon, Bull. Korean Chem. Soc., 1996, 17, 414 CAS.
  52. T. W. Kaaret, G. H. Zhang and T. C. Bruice, J. Am. Chem. Soc., 1991, 113, 4652 CrossRef CAS.
  53. K. Rachlewicz and L. Latos-Grazynski, Inorg. Chem., 1996, 35, 1136 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.