[{(dppe)Pt}2B7H11]: An arachno-bimetallanonaborane based on the uncommon n-B9H15 cluster framework

(Note: The full text of this document is currently only available in the PDF Version )

Ramón Macías, Nigam P. Rath and Lawrence Barton


Abstract

The first bimetallanonaborane, [{(dppe)Pt}2B7B11], based on the uncommon n-B9H15 cluster framework, is prepared and characterized as a final product from the reaction of pentaborane (9) with [PtCl2(dppe)].


References

  1. R. E. Williams, Adv. Inorg. Chem. Radiochem., 1976, 18, 66 Search PubMed.
  2. L. Barton, Top. Cur.. Chem., 1982, 100, 169 CAS.
  3. M. Bown, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Organomet. Chem., 1986, 315, C1 CrossRef CAS.
  4. J. D. Kennedy, Prog. Inorg. Chem., 1986, 36, 211; K. B. Gilbert, S. K. Boocock and S. G. Shore, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, E. W. Abel and F. G. A. Stone, Pergamon, Oxford, 1982, part 6, ch. 41, pp. 879–945 Search PubMed; L. Barton and D. K. Srivastava, Comprehensive Organometallic Chemistry, II, ed. G. Wilkinson, E. W. Abel and F. G. A. Stone, Pergamon, Oxford, 1995, vol. 1, ch. 8, pp. 275–373 Search PubMed.
  5. T. Onak, G. B. Dunks, I. W. Searcy and J. Spielman, Inorg. Chem., 1967, 6, 1465 CrossRef CAS; D. F. Gaines and T. V. Iorns, J. Am. Chem. Soc., 1967, 89, 3375 CrossRef CAS; R. A. Geanangel and S. G. Shore, J. Am. Chem. Soc., 1967, 89, 6771 CrossRef CAS.
  6. N. N. Greenwood and J. Staves, J. Chem. Soc., Dalton Trans., 1977, 1788 RSC; N. N. Greenwood, J. D. Kennedy and J. Staves, J. Chem. Soc., Dalton Trans., 1978, 1146 RSC.
  7. Full experimental details available as supplementary material upon request from the authors.
  8. (a) NMR data for [(dppe)PtB3H7], (CDCl3, 294–297 K){ordered as: relative intensity δ(11B)(rel. to BF3·Oet2)[δ(1H)]} 1BH 19.8 [3.28]; 2BH2 4.1 [4.20 (2 H); 2.80 (2 H), 1J(195Pt–1H)ca. 63 Hz]; additional cage δ(1H)–2.64 (2µ-H). δ(H)(dppe) 7.69–7.41 (4C6H5), 2.37 (m 2CH2). δ(31P)(CDCl3, 294–297 K, rel. 85% H3PO4) 55.4, 1J(195Pt–31P) 2541 Hz. Data compare very well with those for [(PPh3)2PtB3H7], in J. Bould, J. D. Kennedy and W. S. McDonald, Inorg. Chim. Acta., 1992, 196, 201 Search PubMed; (b) [(dppe)(BH3)2], (CDCl3, 294–297 K): 2BH3–39.9 [1.02; AA′ XX′ spin system, N= 15.77 Hz]; 1J(11B–1H) coupling constants not resolved due to the broadness of the boron resonances. δ(31P)(CDCl3, 294–297 K, rel. 85% H3PO4) 18.9 (br).
  9. Selected NMR data for [{(dppe)Pt}2B7H11], (CDCl3, 294–297 K){ordered as: relative intensity δ(11B)(rel. to BF3·OEt2)[δ(1H)]} 1BH 39.2 [3.98], 4B 15.2 [4.98, 4.80, 4.22, 4.12, 2.82 (endo)[2J(195Pt–1H)ca. 67 Hz], 1BH2–4.7 [2.07 (m, J 5.1 Hz; endo/exo)], 1BH –24.6 [1.34]; additional cage δ(1H)–0.23 (bridging), –1.74 (bridging). δ(1H)(dppe) 8.0–6.9 (4C6H5), 2.31 (m, CH2), 1.87 (m, CH2). The 11B spectra were too broad to observe coupling constants. δ(31P)(CDCl3, 228 K, rel. 85% H3PO4) 55.7 [d, P(3 or 4)], 53.1 [d of d, P(2)], 49.4 [s, P(1) and 45.3 d, P(4 or 3)]; 4J[31P(4 or 3)–31P(2)] 12.2 Hz, 1J[195Pt–31P(4 or 3)] 2658 Hz; 4J[31P(4 or 3)–31P(2)]+4J[31P(3 or 4)–31P(2)] 19.0 Hz, 1J[195Pt–31P(2)] 2534 Hz; 1J[195Pt–31P(1)] 2419 Hz; 4J[31P(2)–31P(3 or 4)] 22.6 Hz, 1J[195Pt–31P(3 or 4)] 2609 Hz. Low resolution MS (VG, ZAB-E: FAB in CH2Cl2, 3-nitrobenzyl alcohol matrix) overlapped with the M – H2 ion, gave an apparent cutoff at m/z 1280 (calc. for12C521H5911B731P4198Pt2 1280). Observed and calculated mass spectral parent profiles showing isotopic distribution for the [M–BH3] ion, with m/z(max.)= 1259, compare very well.
  10. Crystal data for C58H74B7O1.5P4Pt2, [(dppe)2Pt2B7H11], M= 1384.90 (includes 1.5 molecules of Et2O), triclinic, space group P[1 with combining macron], a= 12.8918(1), b= 13.7153(1), c= 17.8679(2)Å, α= 97.118(1), β= 94.409(2), γ= 108.92(1)°, U= 2942.44(5)Å3, Dc= 1.563 Mg m–3, Z= 2, F(000)= 1370, µ(Mo-Kα)= 4.897 mm–1, T= 223(2) K. Atotal of 11 509 (Rint= 0.07) independent reflections, 2θmax= 52.0° on a Siemens CCD single-crystal X-ray diffractometer using ω scans. The final wR(F2) for all unique reflections was 0.119 with a conventional R(F) of 0.049 [for 8526 reflections with I > 2σ(I)] for 677 parameters. CCDC 182/824.
  11. J. C. Huffman, PhD Thesis, Indiana University, 1974, p. 771; R. A. Beaudet, Mol. Struct. Energ., 1986, 5, 417 Search PubMed.
  12. U. Dörfler, P. A. Salter, X. L. R. Fontaine, N. N. Greenwood, J. D. Kennedy and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (7/08097B). We thank the authors for providing us with a copy of this manuscript prior to publication Search PubMed.
  13. K. Wade, Adv. Inorg. Chem. Radiochem., 1976, 18, 60 Search PubMed; R. W. Rudolph, Acc. Chem. Res., 1976, 9, 446 CrossRef CAS; D. M. Mingos, Acc. Chem. Res., 1984, 17, 311 CrossRef CAS.
  14. J. D. Kennedy, Main Group Metal Chem., 1989, 12, 149 Search PubMed.
  15. (a) J. Bould, J. E. Crook, N. N. Greenwood and J. D. Kennedy, J. Chem. Soc., Dalton Trans., 1991, 185 RSC; (b) G. B. Barker, M. Green, T. P. Onak, F. G. A. Stone, C. B. Ungermann and A. J. Welch, J. Chem. Soc., Chem. Commun., 1980, 1186 Search PubMed; (c) S. K. Boocock, N. N. Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonald, J. Chem. Soc., Dalton Trans., 1981, 1415 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.