Use of antibodies to dissect the components of a catalytic event. The cyclopropenone hapten

(Note: The full text of this document is currently only available in the PDF Version )

Flavio Grynszpan, Ehud Keinan and Ehud Keinan


Abstract

Antibodies elicited against the planar cyclopropenone hapten 1 efficiently catalyze ester hydrolysis, highlighting the importance of charge rather than shape complementarity as a design element of hydrolytic antibodies.


References

  1. G. Fisher, Enzyme Mechanisms, ed. M. I. Page and A. Williams, The Royal Society of Chemistry, London, 1987, p. 227 Search PubMed.
  2. P. G. Schultz and R. A. Lerner, Science, 1995, 269, 1835 CAS; J. R. Jacobsen and P. G. Schultz, Curr. Opin. Struct. Biol., 1995, 5, 818 CrossRef CAS; G. MacBeath and D. Hilvert, Chem. Biol., 1996, 3, 433 CrossRef CAS; E. Keinan and R. A. Lerner, Israel J. Chem., 1996, 36, 113 Search PubMed; N. R. Thomas, Nat. Prod. Rep., 1996, 479 RSC.
  3. K. D. Janda, M. I. Weinhouse, D. M. Schloeder, R. A. Lerner and S. J. Benkovic, J. Am. Chem. Soc., 1990, 112, 1274 CrossRef CAS; A. I. Khalaf, G. R. Proctor, C. J. Suckling, L. H. Bence, J. I. Irvine and W. H. Stimson, J. Chem. Soc., Perkin Trans. 1, 1992, 1475 RSC.
  4. For the use of haptens with trimethylammonium and phosphate groups on two vicinal carbon atoms, see: H. Suga, O. Ersoy, T. Tsumuraya, J. Lee, A. J. Sinskey and S. Masamune, J. Am. Chem. Soc., 1994, 116, 487 Search PubMed.
  5. For the use of two differently charged haptens in heterologous immunization to generate two catalytic residues in the antibody's active site, see: H. Suga, O. Ersoy, S. F. Williams, T. Tsumuraya, M. N. Margolies, A. J. Sinskey and S. Masamune, J. Am. Chem. Soc., 1994, 116, 6025 Search PubMed; T. Tsumuraya, H. Suga, S. Meguro, A. Tsunakawa and S. Masamune, J. Am. Chem. Soc., 1995, 117, 11 390 CrossRef CAS.
  6. K. T. Potts and J. S. Baum, Chem. Rev., 1974, 74, 189 CrossRef CAS.
  7. H. Tsukada, H. Shimanouchi and Y. Sasada, Tettrahedron Lett., 1973, 27, 2455 Search PubMed; H. Tsukada, H. Shimanouchi and Y. Sasada, Chem. Lett., 1974, 639 CAS.
  8. C. W. Bird and A. F. Hamer, Org. Prep. Proced. Int., 1970, 2, 79 CAS.
  9. Preparation of 54(0.55 g, 2.5 mmol) was dissolved in dry THF (25 ml). Glutaric anhydride (1.42 g, 12.5 mmol) was added and the mixture was stirred at room temp. for 12 h. Work-up and purification by column chromatography (silica gel, EtOAc–hexane 4∶1) afforded 5(0.21 g, 25%) in the form of a colorless solid. δH(CDCl3 with 2 drops CD3OD) 8.05 (s 1 H), 7.90 (s br, 2 H), 7.84 (s br, 1 H), 7.59 (d, J 9.72, 1 H), 7.50 (s, 3 H), 7.41 (t, J 7.48, 1 H), 2.35 (t, J 7.68, 2 H), 2.31 (t, J 6.76, 2 H), 1.91 (t, J 7.80, 2 H); m/z(ESI) 334 (M – H+).
  10. Preparation of 1: sodium nitrate (0.025 g, 0.298 mmol) was added to a stirred solution of 2-[3-(4-carboxybutanamido)phenyl]-3-phenylcyclopropenone (0.1 g, 0.298 mmol) in conc. sulfuric acid (1 ml). The mixture was stirred for 1 h at room temp., then heated to 100 °C for 1 h and poured into ice–water. The precipitate was washed with water, dissolved in EtOAc and passed through a silica gel bed using EtOAc to give 1(0.053 g, 31%) in the form of a colorless solid. δH(CD3OD) 8.87 (s, 1 H), 8.52 (d br, 1 H, J 8.28), 8.50 (s, 1 H), 8.44 (d br, 1 H, J 7.04), 7.95 (t, 1 H, J 7.72), 7.82 (d, 1 H, J 8.04), 7.76 (d, 1 H, J 7.44), 7.66 (s, 1 H), 7.61 (t, 1 H, J 7.80); m/z(LSI) 381 (MH+).
  11. No change in the rate of the 12G2-catalyzed hydrolysis of 6b could be detected in the presence of ethanol (0.001 ml). Partial inhibition of the reaction was observed in the presence of compounds 2, 3 and 5(1 equiv. with respect to the substrate).
  12. T. Okuda, K. Yokose, T. Furumai and H. Maruyama, J. Antibiot., 1984, 37, 718 CAS; H. Tokuyama, M. Isaka, E. Nakamura, R. Ando and Y. Morinaka, J. Antibiot., 1992, 45, 1148 CAS.
  13. R. Ando, Y. Morinaka, H. Tokuyama, M. Isaka and E. Nakamura, J. Am. Chem. Soc., 1992, 115, 1174.
Click here to see how this site uses Cookies. View our privacy policy here.