The synthesis and structure of {[η4-Me8taa]Sn(µ-O)}2: a bridging oxo complex in a system that yields terminal sulfido and selenido counterparts

(Note: The full text of this document is currently only available in the PDF Version )

Matthew C. Kuchta, Tony Hascall and Gerard Parkin


Abstract

Oxo transfer from N2O to divalent [η4-Me8taa]Sn (Me8taaH2 = octamethyldibenzotetraaza[14]annulene) yields the oxo complex, {[η4-Me8taa]Sn(µ-O)}2; the bridging nature of the oxo ligand provides a marked contrast with the terminal sulfido and selenido counterparts, [η4-Me8taa]SnE (E = S, Se).


References

  1. T. M. Trnka and G. Parkin, Polyhedron, 1997, 16, 1031 CrossRef CAS; G. Parkin, Prog. Inorg. Chem., 1998, 47, 1 CAS.
  2. M. C. Kuchta and G. Parkin, Coord. Chem. Rev., in press Search PubMed.
  3. M. C. Kuchta and G. Parkin, Inorg. Chem., 1997, 36, 2492 CrossRef CAS and unpublished results.
  4. M. C. Kuchta and G. Parkin, J. Am. Chem. Soc., 1995, 117, 12 651 CrossRef CAS.
  5. M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun., 1994, 1351 RSC.
  6. M. C. Kuchta and G. Parkin, J. Am. Chem. Soc., 1994, 116, 8372 CrossRef CAS.
  7. Related porphyrin complexes (POR)SnE (E = S, Se) have also been synthesized; see: R. Guilard, C. Ratii, J.-M. Barbe, D. Dubois and K. M. Kadish, Inorg. Chem., 1991, 30, 1537 Search PubMed.
  8. 1H NMR data (C6D6): δ 1.89 (4 CH3), 2.23 (4 CH3), 4.44 (2 CH), 6.68 (4 CH).
  9. {[η4-Me8taa]Sn(µ-O)}2 monoclinic, space group C2/c(no. 15), a= 19.199(2), b= 19.12(2), c= 17.263(1)Å, α= 90, β= 110.019(7)°, γ= 90°, U= 5954.7(8)Å3, Z= 4, R1= 0.0505, wR2= 0.0983 [I > 2σ(I)], room temp. CCDC 182/787.
  10. The Sn–O bond lengths in {[η4-Me8taa]Sn(µ-O)}2[1.987(5) and 2.001(5)Å] compare favorably with the CSD mean (1.98 Å). The search was performed using CSD Version 5.13 for Sn–O interactions with two-coordinate oxygen. 3D Search and Research Using the Cambridge Structural Database, E. H. Allen and O. Kennard, Chem. Des. Automat. News, 1993, vol. 8(1), pp. 1 and 31–37 Search PubMed.
  11. A. G. Davies and P. J. Smith, in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, New York, 1982, vol. 2, ch. 11, p. 573 Search PubMed.
  12. M. A. Edelman, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1990, 1116 RSC.
  13. Some bridging peroxo complexes that have been synthesized by oxidation of divalent tin complexes include {[(Me3Si)2N]2Sn(µ-O2)}213a and {[(Me3Si)2CH]2Sn(µ-O)(µ-O2)Sn[CH(SiMe3)2]}.13b (a) R. W. Chorley, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1992, 525 RSC; (b) C. J. Cardin, D. J. Cardin, M. M. Devereux and M. A. Convery, J. Chem. Soc., Chem. Commun., 1990, 1461 RSC.
  14. U. Weber, N. Pauls, W. Winter and H. B. Stegmann, Z. Naturforsch., Teil B, 1982, 37, 1316 Search PubMed.
  15. H. Puff, W. Schuh, R. Sievers and R. Zimmer, Angew. Chem., Int. Ed. Engl., 1981, 20, 591 CrossRef; H. Puff, W. Schuh, R. Sievers, W. Wald and R. Zimmer, J. Organomet. Chem., 1980, 186, 213 CrossRef.
  16. V. K. Belsky, I. V. Zemlyansky, I. V. Borisova, N. D. Kolosova and I. P. Beletskaya, J. Organomet. Chem., 1983, 254, 189 CrossRef CAS.
  17. J. F. Van der Maelen Uria, M. Belay, F. T. Edelmann and G. M. Sheldrick, Acta Crystallogr., Sect. C, 1994, 50, 403 CrossRef.
  18. S. Masamune, L. R. Sita and D. J. Williams, J. Am. Chem. Soc., 1983, 105, 630 CrossRef CAS.
  19. There are, however, some structurally characterized tin complexes with four-membered rings which incorporate only a single oxygen atom, e.g.[(2,4,6,-Pri3C6H2)2Sn(µ-O)(µ-S)Sn(2,4,6,-Pri3C6H2)2]19a and [{(2,6-Et2C6H3)2Sn}3O].19b (a) P. Brown, M. F. Mahon and K. C. Molloy, J. Chem. Soc., Chem. Commun., 1989, 1621 RSC; (b) C. J. Cardin, D. J. Cardin, M. A. Convery and M. M. Devereux, J. Organomet. Chem., 1991, 411, C3 CrossRef CAS.
  20. P. Jutzi, Angew. Chem. Int. Ed. Engl., 1975, 14, 232 CrossRef.
  21. For example, Richeson and co-worker21a have synthesized the sulfido complex [η2-CyNC(But)NCy]2SnS and Leung et al.21b have reported the tellurido complex {η2-[(C9H6N)(Me3Si)CH]}2SnTe. (a) Y. Zhou and D. S. Richeson, J. Am. Chem. Soc., 1996, 118, 10 850 CrossRef CAS; (b) W.-P. Leung, W.-H. Kwok, L. T. C. Law, Z.-Y. Zhou and T. C. W. Mak, Chem. Commun., 1996, 505 RSC.
  22. M. Veith, S. Becker and V. Hutch, Angew. Chem., Int. Ed. Engl., 1989, 28, 1237 CrossRef.
  23. P. Arya, J. Boyer, F. Carré, R. Corriu, G. Lanneau, J. Lapasset, M. Perrot and C. Priou, Angew. Chem., Int. Ed. Engl., 1989, 28, 1016 CrossRef.
  24. For example, compare the terminal oxo complexes [CpMe]2MoO24a and [CpBut]2MoO24b with the bridging chalcogenido complexes {[CpBut]2-Mo(µ-E)}2(E = S, Se, Te). (a) N. D. Silavwe, M. Y. Chiang and D. R. Tyler, Inorg. Chem., 1985, 24, 4219 CrossRef CAS; (b) J. H. Shin and G. Parkin unpublished results.
  25. Furthermore, theoretical studies on three-coordinate H2M[double bond, length as m-dash]O (M = Ge, Sn, Pb) complexes have indicated that both the σ- and π-bonds are polarized towards oxygen. See: J. Kapp, M. Remkc and P. v. R. Schleyer, J. Am. Chem. Soc., 1996, 118, 5745 Search PubMed; G. Trinquier, M. Pelissier, B. Saint-Roch and H. Lavayssiere, J. Organomet. Chem., 1981, 214, 169 CrossRef CAS; G. Trinquier, J.-C. Barthelat and J. Satge, J. Am. Chem. Soc., 1982, 104, 5931 CrossRef CAS.
  26. For additional theoretical studies on H2M[double bond, length as m-dash]O (M = Si, Ge, Sn, Pb), see: J. Kapp, M. Remko and P. v. R. Schleyer, Inorg. Chem., 1997, 36, 4241 Search PubMed.
  27. W. A. Nugent and J. M. Mayer, Metal–Ligand Multiple Bonds, Wiley-Interscience, New York, 1988 Search PubMed.
  28. Certain early and late transition metal oxo complexes are, however, believed to be best represented by the [M+–O] resonance structure, e.g. Cp*2Zr(O)(NC5H5)28a and (dppp)(L)PtO.28b (a) W. Howard and G. Parkin, J. Am. Chem. Soc., 1994, 116, 606 CrossRef CAS; (b) M. A. Andrews, G. L. Gould and E. J. Voss, Inorg. Chem., 1996, 35, 5740 CrossRef CAS.
  29. The relative contribution of the [M+–E] resonance structure would be most significant for the oxo derivative due to (i) the greater electronegativity of oxygen which stabilizes the negative charge, and (ii) the shorter M–O bond length which results in a greater Coulombic stabilization. See ref 28(a).
  30. M. C. Kuchta and G. Parkin, Polyhedron, 1996, 15, 4599 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.