Non-planar structures of Et3N and Pri3N: a contradiction between the X-ray, and NMR and electron diffraction data for Pri3N

(Note: The full text of this document is currently only available in the PDF Version )

Roland Boese, Dieter Bläser, Mikhail Y. Antipin, Roland Boese, Mikhail Y. Antipin, Vladimir Chaplinski and Armin de Meijere


Abstract

The crystal structures of Et3N and Pri3N were determined by X-ray analysis using the in situ crystallization technique for single crystal growth on the diffractometer; both have a pyramidal configuration of the nitrogen atom, even Pri3N, which was considered to be planar in accord with electron diffraction and NMR data.


References

  1. Review: C. H. Bushweller, in Acyclic Organonitrogen Stereodynamics, ed. J. B. Lambert and Y. Takeuchi, VCH, New York, 1992 Search PubMed.
  2. J. E. Anderson, D. Casarini and L. Lunazzi, J. Org. Chem., 1996, 61, 1290 CrossRef CAS.
  3. J. H. Brown and C. H. Bushweller, J. Am. Chem. Soc., 1992, 114, 8153 CrossRef CAS.
  4. J. H. Brown and C. H. Bushweller, J. Am. Chem. Soc., 1995, 117, 12 567 CrossRef CAS.
  5. J. H. Brown and C. H. Bushweller, J. Phys. Chem., 1994, 98, 11 411 CrossRef CAS.
  6. J. H. Brown and C. H. Bushweller, J. Phys. Chem., 1997, 101, 5700 Search PubMed.
  7. T. C. Wong, L. R. Colazzo and F. S. Guziec, Jr., Tetrahedron, 1995, 51, 649 CrossRef CAS.
  8. A. M. Belostotskii, P. Aped and A. Hassner, J. Mol. Struct. (THEOCHEM), 1997, 398, 427 CrossRef.
  9. (a) A. M. Halpern and R. R. Ramachandran, J. Phys. Chem., 1992, 96, 9832 CrossRef CAS; (b) C. Kölmel, C. Ochsenfeld and R. Ahlrichs, Theor. Chim. Acta, 1991, 82, 271.
  10. For details, see L. V. Vilkov and N. I. Sadova, in Stereochemical Applications of Gas-Phase Electron Diffraction, Part 2, ed. I. Hargittai and M. Hargittai, VCHWeinheim, 1988, pp. 35–92 Search PubMed.
  11. A. J. Blake, E. A. V. Ebsworth and A. J. Welch, Acta Crystallogr., Sect. C., 1984, 40, 413 CrossRef.
  12. H. Bürger, H. Niepel, G. Pawelke and H. Oberhammer, J. Mol. Struct., 1979, 54, 159 CrossRef.
  13. H. Takeuchi, T. Kojima, T. Egawa and S. Konaka, J. Phys. Chem., 1992, 96, 4389 CrossRef CAS.
  14. A. Dimitrov, H.-G. Mack, S. Rüdiger, K. Seppelt and H. Oberhammer, J. Phys. Chem., 1994, 98, 11 401 CrossRef CAS.
  15. M. Gaensslen, U. Gross, H. Oberhammer and S. Rüdiger, Angew. Chem., 1994, 104, 1525; Angew. Chem., Int. Ed. Engl., 1992, 31, 1467 Search PubMed.
  16. H. Bock, I. Göbel, Z. Havlas, S. Liedle and H. Oberhammer, Angew. Chem., 1991, 103, 193 CAS; Angew. Chem., Int. Ed. Engl., 1991, 30, 187 Search PubMed.
  17. J. D. Dunitz and P. Seiler, Acta Crystallogr., Sect. B, 1973, 29, 589 CrossRef CAS.
  18. R. Boese, N. Niederprüm, D. Bläser, A. Maulitz, M. Antipin and P. Mallinson, J. Phys. Chem. B, 1997, 101, 5794 CrossRef CAS.
  19. The sample was prepared according to the procedure described by F. Kuffner and W. Koechlin, Monatsh. Chem., 1962, 93, 476 Search PubMed , with an overall yield of 17%; using MeMgBr instead of MeMgCl increases the yield in the last step from 45 to 89%.
  20. A. de Meijere, V. Chaplinski, P. Rademacher, R. Boese, T. Haumann, P. v. R. Schleyer, T. Zywietz, H. Jiao, P. Merstetter and F. Gerson, Angew. Chem., 1998, submitted for publication Search PubMed.
  21. R. Boese and M. Nussbaumer, Organic Crystal Chemistry, ed. D. W. Jones, Oxford University Press, Oxford, England, 1994, p. 20 Search PubMed.