Reaction of aromatic amines and ethyl acetoacetate promoted by zeolite HSZ-360. Phosgene-free synthesis of symmetric diphenylureas
(Note: The full text of this document is currently only available in the PDF Version )
Franca Bigi and Elena Zambonin
Abstract
Reaction of aromatic amines 1 with ethyl acetoacetate 2 in the presence of the commercially available acid zeolite HSZ-360 gives symmetric diphenylureas 3 in good yields and excellent selectivities.
References
I. E. Maxwell, J. Inclusion Phenom., 1986, 4, 1 CrossRefCAS; W. F. Holderich, M. Hesse and F. Naumann, Angew. Chem., Int. Ed. Engl., 1988, 27, 226 CrossRef; H. Van Bekkum, Recl. Trav. Chim. Pays-Bas, 1989, 108, 283 CAS; M. Balogh and
P. Laszlo,
Organic Chemistry using Clays,
Springer Verlag,
New York,
1993 Search PubMed; A. Cornelius and P. Laszlo, Synlett, 1994, 155 Search PubMed; J. H. Clark, S. R. Cullen, S. J. Barlow and T. W. Bastock, J. Chem. Soc., Perkin Trans. 2, 1994, 1117 CrossRefCAS; A. Corma, Chem. Rev., 1995, 95, 559 RSC; J. H. Clark and J. Macquarrie, Chem. Soc. Rev., 1996, 303 CrossRefCAS; G. Eder-Mirth and J. A. Lercher, Recl. Trav. Chim. Pays-Bas, 1996, 115, 157 RSC; W. F. Holderich,
Comprehensive Supramolecular Chemistry, ed.
G. Alberti and T. Bein,
Pergamon,
Oxford,
1996, vol. 7,
pp. 671–692 CAS; G. W. Kabalka and R. M. Pagni, Tetrahedron, 1997, 53, 7999 CAS.
J. M. Thomas and K. I. Zamaraev, Angew. Chem., Int. Ed. Engl., 1994, 33, 308 CrossRef; New. J. Chem.,
1996,
20, issue dedicated to the ‘Environmentally Benign Chemistry and Chemical Technology’ Search PubMed; R. A. Sheldon, Chem. Ind. (London), 1997, 12 Search PubMed.
T. P. Vishnyakova, I. A. Golubeva and E. V. Glebova, Russ. Chem. Rev. (Engl. Transl.), 1985, 54, 249 Search PubMed.
J. March,
Advanced Organic Chemistry,
Wiley,
New York,
1985,
p. 370 Search PubMed; H.-J. Knölker, T. Braxmeier and G. Schlechtingen, Angew. Chem., Int. Ed. Engl., 1995, 34, 2497 Search PubMed.
P. Majer and R. S. Randad, J. Org. Chem., 1994, 59, 1937 CrossRefCAS.
T. M. Flyes, T. D. James, A. Pryhitka and M. Zojsji, J. Org. Chem., 1993, 58, 7456 CrossRefCAS; M. Lamothe, M. Perez, V. Colovray-Gotteland and S. Halazy, Synlett, 1996, 507 CrossRefCAS.
L. E. Overman, G. F. Taylor, C. B. Petty and P. J. Jessup, J. Org. Chem., 1978, 43, 2164 CrossRefCAS.
W. Werner, Tetrahedron, 1969, 25, 255 CrossRefCAS; W. Werner, Tetrahedron, 1971, 27, 1755 CrossRefCAS.
Zeolite HSZ-360 is a commercial (Tosoh Corp.) acid faujasitic-type
catalyst with 13.9 SiO2–Al2O3 molar ratio, pore size 7.4 Å, surface area
500 ± 10 m2 g–1(determined in our laboratory by the BET method:
S. Brunauer,
P. H. Emmett and
E. Teller,
J. Am. Chem. Soc.,
1938,
60,
309), acidity 0.51 mequiv. H+ g–1[determined in our laboratory by
temperature programmed desorption of ammonia gas (NH3-TPD):
P. Berteau and
B. Delmon,
Catal. Today,
1989,
5,
121] and with the
following chemical composition (wt% dry basis): SiO2 89.0, Al2O3
10.9, Na2O 0.06 Search PubMed.
Zeolite
HSZ-330 is a commercial (Tosoh Corp.) acid faujasitic-type
catalyst with 5.9 SiO2–Al2O3 molar ratio, pore size 7.4 Å, surface area 460 ± 10 m2
g–1(determined in our laboratory by the BET method), acidity 1.59 mequiv. H+ g–1[determined in our laboratory by temperature programmed desorption of ammonia
gas (NH3-TPD)] and with the following chemical composition (wt% dry basis): SiO2 86.1,
Al2O3 13.7, Na2O 0.19.
KSF is a commercial (Fluka) montmorillonite with surface area 15 ± 10 m2 g–1, acidity 0.85 mequiv.
H+ g–1[determined in our laboratory by temperature programmed desorption of ammonia gas (NH3-TPD)] and with the following chemical composition (average value):
SiO2(54.0%), Al2O3(17.0%), Fe2O3(5.2%), CaO (1.5%), MgO (2.5%),
Na2O (0.4%), K2O (1.5%); K10 is a commercial (Fluka) montmorillonite with surface area 200 ± 10 m2 g–1, acidity 0.70 mequiv.
H+ g–1[determined in our laboratory by temperature programmed desorption of ammonia gas (NH3-TPD)] and with the following chemical composition (average value):
SiO2(73.0%), Al2O3(14.0%), Fe2O3(2.7%), CaO (0.2%), MgO (1.1%), Na2O (0.6%),
K2O (1.9%).
See for example: R. A. Sheldon, Chem. Ind. (London), 1992, 903 Search PubMed; R. A. Sheldon, J. Mol. Catal., A, 1996, 107, 75 CAS; D. C. Dittmer, Chem. Ind. (London), 1997, 779 CrossRefCAS.
By carrying out the reaction for longer times the same value of yield (∼70%) was
observed.
A. F. M. Iqbal, Helv. Chim. Acta, 1976, 59, 655 CrossRefCAS3g: pale brown solid, mp 237–238 °C (lit., 236–238 °C); 3h: pale brown solid, mp 237–283.5 °C (lit., 239 °C); 3i: pale brown solid, mp 218–220 °C
(lit., 219–220 °C); 3j: pale brown solid, mp 263–264 °C (lit., 263–265 °C); 3k: pale brown solid, mp 283–284.5 °C (lit., 284 °C).
Click here to see how this site uses Cookies. View our privacy policy here.