The structures of premithramycinone and demethylpremithramycinone, plausible early intermediates of the aureolic acid group antibiotic mithramycin

(Note: The full text of this document is currently only available in the PDF Version )

Jürgen Rohr, Ulrike Weißbach, Claus Beninga, Eva Künzel, Jürgen Rohr, Karsten Siems, Kai U. Bindseil, Felipe Lombó, Laura Prado, Alfredo F. Braña, Carmen Méndez and Jose A. Salas


Abstract

The structures of premithramycinone and its demethyl analogue suggest that the aureolic acid antibiotics are biosynthetically formed via a tetracycline-type, and not a tetracenomycin-type, folded decaketide.


References

  1. The structure elucidation on mithramycin by Thiem et al.(ref. 4), lead to a different sequence of the sug moieties. We reinvestigated the structure of the mithramycin, produced by S. argillaceus ATCC 12956, because of contradictions to the compounds found in our glycosyltransferase inhibition studie (ref. 21). The structure of mithramycin, produced by S. argillaceus, is definitely 1: E. Künzel, S.-E. Wohlert, R. Machinek, C. Méndez, J. A. Salas and J. Rohr, J. Org. Chem., submitted Search PubMed.
  2. The Merck Index, ed. S. Budavari, M. J. O'Neil, A. Smith, P. E. Heckelman and J. F. Kinneary, Merck & Co., Whitehouse Station, NJ, 12th edn., number 7696, 1996, pp. 1298–1299 Search PubMed.
  3. J. D. Skarbek and M. K. Speedie, in Antitumor Compounds of Natural Origin, ed. A. Aszalos, CRC Press, Boca Raton, FL, 1981, vol. 1, pp. 191–235 Search PubMed.
  4. J. Thiem, G. Schneider and V. Sinnwell, Liebigs Ann. Chem., 1986, 814 Search PubMed and references cited therein.
  5. W. A. Remers, in The Chemistry of Antitumor Antibiotics, Wiley-Interscience, New York, 1979, vol. 1, pp. 133–175 Search PubMed.
  6. H. Nakano, H. Ogawa, Y. Yamashita, R. Katahira, S. Chiba, T. Iwasaki and T. Ashizawa, WO 95 06054, JP Appl. 93/211572, 2.5. 1995(Chem. Abstr., 1995, 123, 8030p) Search PubMed.
  7. B. J. Kennedy, J. W. Yarbo, V. Kickertz and M. Sandberg Wollheim, Cancer Res., 1968, 28, 91 CAS.
  8. E. G. Elias and J. T. Evans, J. Bone Jt. Surg., Am. Vol., 1972, 54-A, 1730 Search PubMed.
  9. M. Sastry and D. J. Patel, Biochemistry, 1993, 32, 6588 CrossRef CAS.
  10. A. Montanari and J. P. N. Rosazza, J. Antibiot., 1990, 43, 883 CAS.
  11. G. Blanco, H. Fu, C. Mendez, C. Khosla and J. A. Salax, Chem. Biol., 1996, 3, 193 CrossRef CAS.
  12. E. Künzel, S.-E. Wohlert, C. Beninga, S. Haag, H. Decker, C. R. Hutchinson, G. Blanco, C. Mendez, J. A. Salas and J. Rohr, Chem. Eur. J., 1997, 3, 1675 CAS.
  13. J. Rohr, J. Org. Chem., 1992, 57, 5217 CrossRef CAS.
  14. B. Shen, R. G. Summers, E. Wendt-Pienkowski and C. R. Hutchinson, J. Am. Chem. Soc., 1995, 117, 6811 CrossRef CAS.
  15. P. J. Kramer, R. J. X. Zawada, R. McDaniel, C. R. Hutchinson, D. A. Hopwood and C. Khosla, J. Am. Chem. Soc., 1997, 119, 635 CrossRef CAS.
  16. F. Lombó, K. Siems, A. F. Brana, C. Méndez, K. Bindseil and J. A. Salas, J. Bacteriol., 1997, 179, 3354 CAS.
  17. F. Lombó, G. Blanco, E. Fernández, C. Mendez and J. A. Salas, Gene, 1996, 172, 87 CrossRef CAS.
  18. Selected data for 2: m/z(EI-MS) 414 (M+, 64%), 258 (100), 241 (25), 229 (22), 216 (20), 156 (72); λ(MeOH)/nm (ε) 230 (27 400), 276 (49 700), 323 (7700), 411 (13 100); λextr(MeOH)/nm (θ) 232 (–15 400), 284 (158 000), 412 (–23 800); νmax(KBr)/cm–1 3408, 2923, 1672, 1636, 1449, 1401, 1343, 1161, 1096, 1013, 996, 873, 743, 609. For 3: m/z(EI-MS) 400 (M+, 8%), 259 (61), 241 (48), 230 (100), 133 (90).
  19. Yu. A. Berlin, M. N. Kolosov, I. V. Vasina and I. V. Yartseva, J. Chem. Soc., Chem. Commun., 1968, 762 RSC.
  20. Y.-Z. Shu, J. Q. Cutrone, S. E. Klohr and S. Huang, J. Antibiot., 1995, 48, 1060 CAS.
  21. Inactivation of a mithramycin-glycosyltransferase gene in the mithramycin producer S. argillaceus resulted in four different glycosylated compounds containing one, two or all three sugars of the mithramycin trisaccharide chain, and premithramycinone (for one monosaccharide) and its 9-methyl analogue (for the other mono-, di- and tri-saccharide), respectively, as aglycon moiety: E. Fernández, A. F. Braña, C. Méndez, J. A. Salas, U. Weiβbach, J. Rohr, unpublished results.
  22. M. Gerlitz, G. Udvarnoki and J. Rohr, Angew. Chem., Int. Ed. Engl., 1995, 34, 1617 CrossRef CAS.
  23. This mechanistically interesting alternative to the Baeyer–Villiger oxidation was suggested by one of the referees.
  24. Routine feeding experiments on S. argillaceus using [1-13C]- and [2-13C]-acetate resulted in an incorporation pattern in mithramycin identical to that found earlier in chromomycin A3(ref. 10).
Click here to see how this site uses Cookies. View our privacy policy here.