Modeling the active sites of bacteriophage T7 lysozyme, bovine 5-aminolevulinate dehydratase, and peptide deformylase: synthesis and structural characterization of a bis(pyrazolyl)(thioalkoxy)hydroborato zinc complex, [(Ph2CHS)BpBut,Pri]ZnI

(Note: The full text of this document is currently only available in the PDF Version )

Prasenjit Ghosh and Gerard Parkin


Abstract

Insertion of thiobenzophenone into a B–H bond of [BpBut,Pri]ZnI achieves the synthesis of [(Ph2CHS)BpBut,Pri]ZnI, a complex in which the in situ generated [NNS] donor ligand models the binding of the histidine and cysteine residues at the active sites of bacteriophage T7 lysozyme, bovine 5-aminolevulinate dehydratase and peptide deformylase.


References

  1. B. L. Vallee and D. S. Auld, in Matrix Metalloprotinases and Inhibitors, ed. H. Birkedal-Hansen, Z. Werb, H. G. Welgus and H. E. van Wart, Gustav Fischer Verlag, New York, 1992, pp. 5–19 Search PubMed; B. L. Vallee and D. S. Auld, Biochemistry, 1990, 29, 5647 Search PubMed; 1993, 32, 6493 CrossRef CAS.
  2. J. E. Coleman, Annu. Rev. Biochem., 1992, 61, 897 CrossRef CAS.
  3. B. L. Vallee and D. B. Auld, Acc. Chem. Res., 1993, 26, 543 CrossRef CAS; W. N. Lipscomb and N. Sträter, Chem. Rev., 1996, 96, 2375 CrossRef CAS; R. H. Holm, P. Kennepohl and E. I. Solomon, Chem. Rev., 1996, 96, 2239 CrossRef CAS.
  4. R. Alsfasser, S. Trofimenko, A. Looney, G. Parkin and H. Vahrenkamp, Inorg. Chem., 1991, 30, 4098 CrossRef CAS; A. Looney, R. Han, K. McNeill and G. Parkin, J. Am. Chem. Soc., 1993, 115, 4690 CrossRef CAS.
  5. Bis(pyrazolyl)hydroborato ligands are represented by the abbreviations [BpR,R] with the 3- and 5-alkyl substituents listed respectively as superscripts. See: G. Parkin, Adv. Inorg. Chem., 1995, 42, 291 Search PubMed.
  6. C. Kimblin, W. E. Allen and G. Parkin, J. Chem. Soc., Chem. Commun., 1995, 1813 RSC.
  7. C. Dowling and G. Parkin, Polyhedron, 1996, 15, 2463 CrossRef CAS.
  8. C. Kimblin, T. Hascall and G. Parkin, Inorg. Chem., 1997, 36, 5680 CrossRef CAS.
  9. Specifically, T7 lysozyme cleaves the amide bond between L-alanine and N-acetylmuramate moieties. See: M. Inouye, N. Arnheim and R. Sternglanz, J. Biol. Chem., 1973, 248, 7247 Search PubMed.
  10. In addition to its lyase activity, T7 lysozyme also inhibits transcription by binding to T7 RNA polymerase. However, zinc is not required for such action. See: X. Cheng, X. Zhang, J. W. Pflugrath and F. W. Studier, Proc. Natl. Acad. Sci. USA, 1994, 91, 4034 Search PubMed.
  11. A. J. Dent, D. Beyersmann, C. Block and S. S. Hasnain, Biochemistry, 1990, 29, 7822 CrossRef CAS.
  12. T. Meinnel, C. Lazennec and S. Blanquet, J. Mol. Biol., 1995, 254, 175 CrossRef CAS; T. Meinnel, S. Blanquet and F. Dardel, J. Mol. Biol., 1996, 262, 375 CrossRef CAS; T. Meinnel, C. Lazennec, S. Villoing and S. Blanquet, J. Mol. Biol., 1997, 267, 749 CrossRef CAS.
  13. [BpBut,Pri]ZnI is obtained by reaction of ZnI2 with Tl[BpBut,Pri](C. Dowling, P. Ghosh and G. Parkin, Polyhedron, 1997, 16, 3469) Search PubMed.
  14. [(Ph2CHS)BpBut,Pri]ZnI·0.5C7H8 is monoclinic, P21/c(no. 14), a= 20.474(2), b= 9.228(1), c= 20.785(2)Å, β= 90.767(6)°, U= 3926.4(7)Å3, and Z= 4. CCDC 182/718.
  15. Selected bond lengths in T7 lysozyme: 2.52 Å[Zn–N(His-17)], 2.67 Å[Zn–N(His-122)] and 2.15 Å[Zn–S(Cys-130)]. See ref. 10.
  16. Selected bond lengths (EXAFS) in bovine 5-aminolevulinate dehydratase: 2.05 Å[Zn–N(His)], 2.05 Å[Zn–N(His)] and 2.32 Å[Zn–S(Cys)]. See ref. 11.
  17. U. Brand and H. Vahrenkamp, Inorg. Chem., 1995, 34, 3285 CrossRef CAS.
  18. Likewise, N-(2-mercaptophenyl)picolylamine has not yielded monomeric [NNS]ZnX complexes that have been structurally characterized. See: U. Brand and H. Vahrenkamp, Chem. Ber., 1996, 129, 435 Search PubMed.
  19. I. G. Dance, Polyhedron, 1986, 5, 1037 CrossRef CAS; P. J. Blower and J. R. Dilworth, Coord. Chem. Rev., 1987, 76, 121 CrossRef CAS; R. H. Prince, in Comprehensive Coordination Chemistry, ed. G. Wilkinson, R. D. Gillard and J. McCleverty, Pergamon, Oxford, 1987, vol. 5, pp. 925–1045 Search PubMed.
  20. Copper and tungsten derivatives of related [(RS)BpRR'] ligands, namely [(p-TolS)BpMe2]CuSR20a and [(p-TolCH2S)Bp]Mo(CO)22-S2CR),20b have also been reported, although they have not been structurally characterized. (a) J. S. Thompson, J. L. Zitmann, T. J. Marks and J. A. Ibers, Inorg. Chim. Acta, 1980, 46, L101 CrossRef CAS; (b) A. F. Hill and J. M. Malget, J. Chem. Soc., Dalton Trans., 1997, 2003 RSC.
  21. [(Ph2CHO)BpBut,Pri]ZnI is orthorhombic, Pca21(no. 36), a= 10.826(2), b= 16.378(3), c= 19.729(4)Å, U= 3498(1)Å3 and Z= 4. CCDC 182/718.
  22. It is also worth noting that barriers to rotation follow a similar trend. For example, rotation about the B–O bond in R2BOR' complexes is more facile than rotation about the B–S bond in R2BSR'. See: M. T. Ashby and N. A. Sheshtawy, Organometallics, 1994, 13, 236 Search PubMed.
  23. For a brief review on dynamic NMR spectroscopy, see: G. Binsch and H. Kessler, Angew. Chem., Int. Ed. Engl., 1980, 19, 411 Search PubMed.
  24. The enthalpy and entropy of activation are: ΔH= 9(1)kcal mol–1 and ΔS=– 19(5) cal K–1 mol–1.
  25. For other examples of inversion that have been studied by dynamic NMR spectroscopy, see: E. W. Abel, S. K. Bhargava and K. G. Orrell, Prog. Inorg. Chem., 1984, 32, 1 Search PubMed.
  26. For example, it is well documented that the inversion barrier of NH3 is considerably lower than that of PH3 owing to the reduced tendency of phosphorus to hybridize and obtain a planar transition state. Related effects are also observed with the chalcogens which indicate that oxygen has a greater tendency to participate in hybridization than do its heavier congeners (e.g. the bond angle in H2O is considerably greater than the almost 90° bond angles in H2S, H2Se and H2Te) See: W. Kutzelnigg, Angew. Chem., Int. Ed. Engl., 1984, 23, 272 Search PubMed; W. Cherry and N. Epiotis, J. Am. Chem. Soc., 1976, 98, 1135 CrossRef; J. Lambert, Top. Stereochem., 1971, 6, 19 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.