Michael addition to α,β-unsaturated arene ruthenium(II) cyclopentadiene complexes: endo nucleophilic addition

(Note: The full text of this document is currently only available in the PDF Version )

Robert M. Moriarty, Livia A. Enache, George L. Gould, Donald J. Wink, Livia A. Enache and Richard Gilardi


Abstract

Certain carbon and sulfur nucleophiles add to the β-terminus of the styrene system in α,β-unsaturated arene ruthenium(II) cyclopentadiene complexes, and unexpected endo addition occurs preferentially in some cases.


References

  1. S. G. Davies, Organotransition Metal Chemistry: Applications to Organic Synthesis, Pergamon Press, New York, 1986, pp. 116–155 Search PubMed; A. G. Pearson, Metallo-Organic Chemistry, Wiley, New York, 1988, pp. 163–389 Search PubMed.
  2. M. R. Churchill and R. Mason, Proc. R. Soc. Lond., A, 1964, 279, 191 CAS; A. N. Nesmeyanov, N. A. Vol'kenau, L. S. Shilovtseva and V. A. Petrakova, Izv. Akad. Nauk., Ser. Khim., 1975, 1151 Search PubMed; M. F. Semmelhack, H. T. Hall, Jr., R. Farina, M. Yoshifuji, G. Clark, T. Bargar, K. Hirotsu and J. Clardy, J. Am. Chem. Soc., 1979, 101, 3535 CrossRef CAS; in a study involving benzylic substitution and nucleophilic addition to the benzene ring in cyclopentadienyl(η6-tetrahydronaphthalene)iron(II) complexes, Grundy and collaborators were led to believe that “the Fe(Cp) group may be less effective in ‘face blocking’ of arene nuclei than is the Cr(CO)3 fragment and is unlikely to be able to exert sufficient influence to direct a first methyl group stereospecifically exo”(S. L. Grundy, A. R. H. Sam and S. R. Stobart, J. Chem. Soc., Perkin Trans. 1, 1989, 1663) Search PubMed.
  3. (a) G. R. Knox, D. G. Leppard, P. L. Pauson and W. E. Watts, J. Organomet. Chem., 1972, 34, 347 CrossRef CAS; (b) M. F. Semmelhack, W. Seufert and L. Keller, J. Am. Chem. Soc., 1980, 102, 6584 CrossRef CAS.
  4. (a) M. F. Semmelhack, Organic Synthesis Today and Tomorrow, Proceedings of the 3rd IUPAC Symposium on Organic Synthesis, Madison, Wisconsin, U.S.A., 15–20 June 1980, pp. 63–69 Search PubMed; (b) M. F. Semmelhack, Ann. N.Y. Acad. Sci., 1977, 295, 36 CAS.
  5. (a) M. Uemura, T. Minami and Y. Hayashi, J. Chem. Soc., Chem. Commun., 1984, 1193 RSC This paper reported the Michael addition of LiC(CN)MeCOCHMeOEt to tricarbonyl(5-methoxy-1,2-dihydronaphthalene) chromium. Exo addition was assumed; (b) P. Bloem, D. M. David, L. A. P. Kane-Maguire, S. G. Pyne, B. W. Skelton and A. H. White, J. Organomet. Chem., 1991, 407, C19 CrossRef and references cited therein. These workers studied the addition of MeLi to tricarbonyl(N-benzylidene- 1-methylaniline)chromium. Exo addition was determined by X-ray analysis.
  6. R. M. Moriarty, Y.-Y. Ku and L. Guo, J. Chem. Soc., Chem. Commun., 1988, 1621 RSC; R. M. Moriarty, Y.-Y. Ku and U. S. Gill, J. Chem. Soc., Chem. Commun., 1987, 1493 RSC; R. M. Moriarty, Y.-Y. Ku and U. S. Gill, Organometallics, 1988, 7, 660 CrossRef CAS; R. M. Moriarty and U. S. Gill, organometallics, 1985, 5, 253; U. S. Gill and R. M. Moriarty, Synth. React. Inorg. Met.-Org. Chem., 1986, 16, 485 CAS; U. S. Gill and R. M. Moriarty, Synth. React. Inorg. Met.-Org. Chem., 1986, 16, 1103 CAS; R. M. Moriarty, Y.-Y. Ku and U. S. Gill, J. Chem. Soc., Chem. Commun., 1987, 1837 RSC.
  7. A. C. Knipe, S. J. McGuinness and W. E. Watts, J. Chem. Soc., Perkin Trans. 2, 1981, 193 RSC.
  8. Various nitrogen nucleophiles (hydrazine, methylhydrazine, gem-dimethylhydrazine, 1,2-dimethylhydrazine, 1,2-ethylenediamine, ethylamine, ethanolamine) were also studied. Oxygen nucleophiles did not undergo addition to 1a–c under our conditions. Since no stereochemical endo : exo assignments could be reliably made from the available data, the nitrogen nucleophiles (NMR tube experiments, [2H6]DMSO) were not extensively included in the present study. Still, they displayed extremely interesting reactivity patterns worth noting (data from 1H NMR, 13C NMR, HRMS + FAB analysis). With H2NNH2, H2NEt and H2NCH2CH2NH2, 1–c reacted completely in 30 min at rt (ca. 80% conversion of 1a in the first 5 min). H2NNHMe adds slower than hydrazine itself, and H2NNMe2, adds even slower. H2NCH2CH2OH reacted very slowly, with < 30% conversion, when heated up to 100 °C. PriNH2 and MeNHNHMe did not react even after 48 h at rt or 60 °C overnight.
  9. E. J. Corey and M. Chaykovsky, J. Am. Chem. Soc., 1965, 87, 1353 CrossRef CAS.
  10. B. E. R. Schilling, R. Hoffmann and J. W. Faller, J. Am. Chem. Soc., 1979, 101, 592 CrossRef CAS.
  11. G. Stork and W. N. White, J. Am. Chem. Soc., 1956, 78, 4604 CrossRef CAS; G. Stork and W. N. White, J. Am. Chem. Soc., 1956, 78, 4609 CrossRef CAS; For a very comprehensive review of the SN2′ reaction, see R. M. Magid, Tetrahedron Report Number 87, Tetrahedron, 1980, 36, 1901 Search PubMed.
  12. Semmelhack presents evidence of a mobile equilibrium between I and II. The example of ref. 5(b) is complicated by the α,β-unsaturation being –N = CHPh.
  13. An X-ray structure of the major component of product 4 has been obtained.
  14. Molecular orbital and predictive results were obtained using M. C. Zerner's ZINDO program (version 3.0) from CAChe Scientific. Atomic coordinates were first optimized using molecular mechanics (augmented CAChe MM2 force field), and orbital energies calculated directly using the INDO 1 basis set. Self-consistent field molecular orbital energies were obtained in the restricted Hartree–Fock level within 4 Å self-consistent reaction field (SCRF) cavity with the relative permittivity and refractive index of water.
Click here to see how this site uses Cookies. View our privacy policy here.