Zwitterionic alkene polymerization catalyst derived from Cp2Zr(η2-C2H4)PPh2Me and B(C6F5)3

(Note: The full text of this document is currently only available in the PDF Version )

Yimin Sun, Warren E. Piers, Yimin Sun and Steven J. Rettig


Abstract

The phosphine stabilized ethylene complex of zirconocene, Cp2Zr, reacts with 1 equiv. of B(C6F5)3 to form the girdle-type zwitterion Cp2Zr+(PPh3Me)CH2CH2B(C6F5)3 2, which serves as an ethene polymerization catalyst either with or without added B(C6F5)3.


References

  1. H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger and R. M. Waymouth, Angew. Chem., Int. Ed. Engl., 1995, 34, 1143 CrossRef CAS; M. Bochmann, J. Chem. Soc., Dalton Trans., 1996, 255 RSC; T. J. Marks, Acc. Chem. Res., 1992, 25, 57 CrossRef CAS; R. F. Jordan, Adv. Organomet. Chem., 1991, 32, 325 CAS.
  2. A. M. Thayer, Chem. Eng. News, 1995, 73, 15; R. G. Harvan, Chem. Ind., 1997, 212 CAS.
  3. J. W. Lauher and R. Hoffmann, J. Am. Chem. Soc., 1976, 98, 1729 CrossRef CAS.
  4. W. E. Piers, Chem. Eur. J., 1998, in press Search PubMed.
  5. (a) R. E. v. H. Spence and W. E. Piers, Organometallics, 1995, 14, 4617 CrossRef CAS; (b) Y. Sun, R. E. v. H. Spence, W. E. Piers, M. Parvez and G. P. A. Yap, J. Am. Chem. Soc., 1997, 119, 5132 CrossRef CAS; (c) M. Bochmann, S. J. Lancaster and O. B. Robinson, J. Chem. Soc., Chem. Commun., 1995, 2081 RSC; (d) J. Ruwwe, G. Erker and R. Fröhlich, Angew. Chem., Int. Ed. Engl., 1996, 35, 80 CrossRef CAS.
  6. B. Temme, G. Erker, J. Karl, H. Luftmann, R. Fröhlich and S. Kotila, Angew. Chem., Int. Ed. Engl., 1995, 34, 1755 CrossRef CAS; B. Temme, J. Karl and G. Erker, Chem. Eur. J., 1996, 2, 919 CAS; B. Temme, G. Erker, R. Fröhlich and M. Grehl, Angew. Chem., Int. Ed. Engl., 1994, 33, 1480 CrossRef; W. Ahlers, B. Temme, G. Erker, R. Fröhlich and T. Fox, J. Organomet. Chem., 1997, 527, 191 CrossRef; B. Temme, G. Erker, R. Fröhlich and M. Grehl, J. Chem. Soc., Chem. Commun., 1994, 1713 RSC; G. G. Hlatky, H. W. Turner and R. R. Eckman, J. Am. Chem. Soc., 1989, 111, 2728 CrossRef CAS.
  7. A. G. Massey and A. J. Park, J. Organomet. Chem., 1964, 2, 245 CrossRef CAS; W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, in press Search PubMed.
  8. T. Takahashi, M. Murakami, M. Kunishige, M. Saburi, Y. Uchida, K. Kozawa, T. Uchida, D. R. Swanson and E. Negishi, Chem. Lett., 1989, 761 CAS.
  9. R. G. Kidd, in NMR of Newly Accessible Nuclei, ed. P. Laszlo, Academic Press, New York, 1983, vol. 2 Search PubMed.
  10. D. J. Parks, R. E. v. H. Spence and W. E. Piers, Angew. Chem., Int. Ed. Engl., 1995, 34, 809 CrossRef CAS.
  11. Y. Sun, W. E. Piers and S. J. Rettig, Organometallics, 1996, 15, 4110 CrossRef CAS.
  12. R. F. Jordan, P. K. Bradley, N. C. Baenziger and R. E. LaPointe, J. Am. Chem. Soc., 1990, 112, 1289 CrossRef CAS; Y. W. Alelyunas, Z. Guo, R. E. LaPointe and R. F. Jordan, Organometallics, 1993, 12, 544 CrossRef CAS.
  13. M. Brookhart, M. L. H. Green and L. Wong, Prog. Inorg. Chem., 1988, 36, 1 CAS.
  14. T. Yonezawa, I. Moreshima, M. Fujii and K. Fuki, Bull. Chem. Soc. Jpn., 1965, 38, 1226; R. Aydin and H. Gunther, J. Am. Chem. Soc., 1981, 103, 1301 CrossRef CAS.
  15. Using the equation kc=πΔνc/√2, where Δνc= the peak separation in Hz at coalescence (estimated from the peak separation in the low temperature limit). See: J. Sandstrom, Dynamic NMR Spectroscopy, Academic Press, New York, 1982, pp. 77–92 Search PubMed.
  16. Y. W. Alelyunas, N. C. Baenziger, P. K. Bradley and R. F. Jordan, Organometallics, 1994, 13, 148 CrossRef.
  17. See ref. 5(b) for experimental conditions used in our laboratory.
Click here to see how this site uses Cookies. View our privacy policy here.