Major differences in the behaviour of carbon paste and carbon fibre electrodes in a protein–lipid matrix: implications for voltammetry in vivo

(Note: The full text of this document is currently only available in the PDF Version )

David A. Kane and Robert D. O’Neill


Abstract

The widely documented differences in behaviour of carbon fibre electrodes (CFEs) and carbon paste electrodes (CPEs) used for neurochemical analysis in vivo were investigated. Differential staircase voltammetry was used to study the electrooxidation of ascorbic acid (AA) at CFEs and CPEs in the presence of major constituents of brain tissue, viz., protein, lipid or a mixture of both. Both electrode types were poisoned by protein, reflected in positive shifts in the AA voltammetric peak potential, and also peak broadening, following exposure of the electrodes to protein solution. In contrast, CFEs and CPEs responded very differently to exposure to lipid suspension: CFEs exhibited poisoning whereas CPEs showed enhanced electron transfer kinetics for AA. This significant difference in the response of the two carbon materials to lipid was further demonstrated by showing that lipid could reverse the poisoning caused by protein for CPEs but not CFEs. It appears, therefore, that proteins adsorb on both CPEs and CFEs, hindering electron transfer from AA to the electrode surface. Surfactant lipid molecules, in contrast, have a cleaning effect on CPEs, removing pasting oil and adsorbed proteins from the CPE surface. These results provide an explanation for the stability of CPEs in brain tissue and for the contrasting instability of CFEs in the same environment. The data also suggest that a lipid–protein matrix represents a valuable in vitro chemical model of brain tissue that should allow a truer characterisation in vitro of new and existing in vivo sensors, reducing the need for animal experiments in these studies.


References

  1. Voltammetric Methods in Brain Systems, ed. A. A. Boulton, G. B. Baker and R. N. Adams, Humana Press, Clifton, NJ, 1995 Search PubMed.
  2. K. T. Kawagoe, J. B. Zimmerman and R. M. Wightman, J. Neurosci. Methods, 1993, 48, 225 CrossRef CAS.
  3. R. D. O'Neill, Analyst, 1994, 119, 767 RSC.
  4. R. D. O'Neill, J. P. Lowry and M. Mas, Crit. Rev. Neurobiol., 1998, 12, 69 Search PubMed.
  5. C. D. Blaha and A. G. Phillips, Behav. Pharmacol., 1996, 7, 675 Search PubMed.
  6. G. V. Rebec and R. C. Pierce, Prog. Neurobiol., 1994, 43, 537 CrossRef CAS.
  7. R. D. O'Neill, in Voltammetric Methods in Brain Systems, ed. A. A. Boulton, G. B. Baker and R. N. Adams, Humana Press, Clifton, NJ, 1995, p. 221 Search PubMed.
  8. J. A. Stamford and J. B. Justice, Anal. Chem., 1996, 68, A359.
  9. P. Pantano and W. G. Kuhr, Electroanalysis, 1995, 7, 405 CAS.
  10. J. P. Lowry, K. McAteer, S. S. El Atrash, A. Duff and R. D. O'Neill, Anal. Chem., 1994, 66, 1754 CrossRef CAS.
  11. S. Poitry, C. Poitry-Yamate, C. Innocent, S. Cosnier and M. Tsacopoulos, lectrochim. Acta, 1997, 42, 3217 Search PubMed.
  12. S. S. El Atrash and R. D. O'Neill, Electrochim. Acta, 1995, 40, 2791 CrossRef.
  13. F. Gonon, M. Buda, R. Cespuglio, M. Jouvet and J. F. Pujol, Nature (London), 1980, 286, 902 CrossRef CAS.
  14. C. A. Marsden, M. H. Joseph, Z. L. Kruk, N. T. Maidment, R. D. O'Neill, J. O. Schenk and J. A. Stamford, Neuroscience, 1988, 25, 389 CrossRef CAS.
  15. R. D. O'Neill, R. A. Grunewald, M. Fillenz and W. J. Albery, Neuroscience, 1982, 7, 1945 CrossRef CAS.
  16. M. Fillenz and R. D. O'Neill, J. Physiol. (London), 1986, 374, 91 Search PubMed.
  17. A. Duff and R. D. O'Neill, J. Neurochem., 1994, 62, 1496 CAS.
  18. K. B. Oldham, J. Electroanal. Chem., 1985, 184, 257 CrossRef CAS.
  19. C. Amatore, R. S. Kelly, E. W. Kristensen, W. G. Kuhr and R. M. Wightman, J. Electroanal. Chem., 1986, 213, 31 CrossRef CAS.
  20. W. J. Albery, N. J. Goddard, T. W. Beck, M. Fillenz and R. D. O'Neill, J. Electroanal. Chem., 1984, 161, 221 CrossRef CAS.
  21. D. E. Ormonde and R. D. O'Neill, J. Electroanal. Chem., 1990, 279, 109 CrossRef CAS.
  22. M. E. Rice and C. Nicholson, in Voltammetric Methods in Brain Systems, ed. A. A. Boulton, G. B. Baker and R. N. Adams, Humana Press, Clifton, NJ, 1995, p. 27 Search PubMed.
  23. M. Miele and M. Fillenz, J. Neurosci. Methods, 1996, 70, 15 CrossRef CAS.
  24. M. W. Lada and R. T. Kennedy, J. Neurosci. Methods, 1995, 63, 147 CrossRef CAS.
  25. J. J. Ruiz, J. M. Rodriguez-Mellado, M. Dominguez and A. Aldaz, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 1567 RSC.
  26. I. F. Hu and T. Kuwana, Anal. Chem., 1986, 58, 3235 CrossRef CAS.
  27. L. A. Coury, Jr. and W. R. Heineman, J. Electroanal. Chem., 1988, 256, 327 CrossRef.
  28. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706 CrossRef CAS.
  29. A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p. 523 Search PubMed.
  30. R. C. Pierce, A. J. Clemens, C. P. Grabner and G. V. Rebec, J. Neurochem., 1994, 63, 1499 CAS.
  31. J. Cassidy, W. Breen, A. McGee, T. McCormac and M. E. G. Lyons, J. Electroanal. Chem., 1992, 333, 313 CrossRef CAS.
  32. T. M. Nahir and E. F. Bowden, J. Electroanal. Chem., 1996, 410, 9 CrossRef CAS.
  33. Y. I. Turyan and R. Kohen, J. Electroanal. Chem., 1995, 380, 273 CrossRef CAS.
  34. J. Kulys, L. Gorton, E. Dominguez, J. Emneus and H. Jarskog, J. Electroanal. Chem., 1994, 372, 49 CrossRef CAS.
  35. A. J. Downard and A. D. Roddick, Electroanalysis, 1994, 6, 409 CAS.
  36. A. E. F. Nassar, W. S. Willis and J. F. Rusling, Anal. Chem., 1995, 67, 2386 CrossRef CAS.
  37. F. N. Albahadily and H. A. Mottola, Anal. Chem., 1987, 59, 958 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.