Determination of Pb in the ash fraction of plants and peats using the Energy-dispersive Miniprobe Multielement Analyser (EMMA)

(Note: The full text of this document is currently only available in the PDF Version )

Dominik Weiss, William Shotyk, Andrij K. Cheburkin and Marlies Gloor


Abstract

Dry ashing at 550 °C was used to pre-concentrate Pb in peat and plant material prior to analysis using the Energy-dispersive Miniprobe Multielement Analyser (EMMA). Using approximately 1 g of starting material, precise determination of the ash content using a conventional laboratory balance (±1 mg precision) was possible provided the mineral matter concentration exceeded about 3.5%, yielding approximately 35 mg of ash for analysis. To assess possible loss of Pb upon ashing, certified plant reference materials and independent analytical methods (ICP-MS of acid digests and EMMA analysis of whole peats) were used for comparison. No significant systematic loss of Pb occurred during ashing. The accuracy of Pb determinations using dry ashing was within 10% in plant materials containing as little as 0.5 µg g–1 (estimated from certified plant material). The EMMA determinations of Pb in peat by dry ashing generally agreed with the ICP-MS analyses of acid digests within 12% down to 0.2 µg g–1. The average limit of detection for a sample containing 2% of mineral matter was 100 ng g–1, more than five times better than the detection limit obtained using EMMA analyses of whole peats. Overall accuracy and precision were better when Pb was measured by dry ashing compared to direct analysis of solid peats or plants.


References

  1. W. S. Fyfe, Science (Washington D.C.), 1981, 213, 105 Search PubMed.
  2. J. O. Nriagu, Science (Washington D.C.), 1996, 272, 223 Search PubMed.
  3. H. R. Ross, Water, Air, Soil Pollut., 1990, 50, 63 CAS.
  4. J. Carignan and C. Gariépy, Geochim. Cosmochim. Acta, 1995, 59, 4427 CrossRef CAS.
  5. W. Shotyk, A. K. Cheburkin, P. G. Appleby, A. Fankhauser and J. D. Kramers, Earth Planet. Sci. Lett., 1996, 145, E1 CrossRef.
  6. W. Shotyk, D. Weiss, P. G. Appleby, A. K. Cheburkin, R. Frei, M. Gloor, J. D. Kramers, S. Reese and W. O. van der Knaap, Science, (Washington D.C.), 1998, 281, 1635 Search PubMed.
  7. M. L. Bränvall, R. Bindler, O. Emteryd, M. Nilsson and I. Renberg, Water, Air, Soil Pollut., 1997, 100, 243 CrossRef.
  8. D. Weiss, W. Shotyk, A. K. Cheburkin, M. Gloor and S. Reese, Water, Air, Soil Pollut., 1997, 100, 311 CrossRef CAS.
  9. B. Markert and I. Thornton, Water, Air, Soil Pollut., 1990, 49, 113 CrossRef CAS.
  10. M. Görres and B. Frenzel, Naturwissen., 1993, 80, 333 Search PubMed.
  11. J. P. Willis, A Comparison of Trace Element Analysis of Whole Coal by INAA and XRFS, CSI-Symposium CSI XXIV, Jülich, 1986, Jül-Conf-55, 101–110 Search PubMed.
  12. D. Weiss, W. Shotyk, J. Schäfer, U. Loyall, E. Grolimund and M. Gloor, Fresenius' J. Anal. Chem., in the press Search PubMed.
  13. C. S. E. Papp and L. B. Fischer, Analyst, 1987, 112, 337 RSC.
  14. L. Vogel-Koplitz, J. Urbanik, S. Harris and O. Mills, Environ. Sci. Technol., 1994, 28, 538.
  15. P. Wilson, M. Cooke, J. Cawley, L. Giles and M. West, X-ray Spectrom., 1995, 24, 103 CAS.
  16. J. P. Willis, in X-ray Fluorescence Analysis in the Geological Sciences—Advances in Methodology, ed. S. T. Ahmedali, Geological Association of Canada, Montreal, Quebec, Canada, 1989, Short Course 7, pp. 91–110.
  17. J. Boman, C. Larsson, M. Olsson and H. Raitio, X-ray Spectrom., 1996, 25, 89 CAS.
  18. A. Rindby, X-ray Spectrom., 1993, 22, 187 CAS.
  19. E. Selin, P. Standzenieks, J. Boman and V. Teeyasoontranont, X-ray Spectrom., 1993, 22, 281 CAS.
  20. J. Omote, H. Kohno and K. Toda, Anal. Chim. Acta, 1995, 307, 117 CrossRef CAS.
  21. V. Vijayan, S. N. Behera, V. S. Ramamurthy, S. Puri, J. S. Shahi and N. Singh, X-ray Spectrom., 1997, 26, 65 CrossRef CAS.
  22. A. K. Cheburkin and W. Shotyk, Fresenius' J. Anal. Chem., 1996, 354, 688 CAS.
  23. J. P. Willis, Fresenius' Z. Anal. Chem., 1986, 324, 855 CrossRef CAS.
  24. T. T. Gorsuch, Analyst, 1959, 84, 135 RSC.
  25. T. T. Gorsuch, The Destruction of Organic Matter, Pergamon Press, London, 1970 Search PubMed.
  26. Z. Xue and Y. Wang, J. Radioanal. Nucl. Chem. Lett., 1987, 119, 425 CAS.
  27. P. Mader, J. Szàkovà and E. Curdova, Talanta, 1996, 43, 521 CrossRef CAS.
  28. S. B. Adeloju, Analyst, 1989, 114, 455 RSC.
  29. C. S. E. Papp and T. F. Harms, Analyst, 1985, 110, 237 RSC.
  30. N. Müller and N. Lambersdorf, Telma, 1995, 25, 143 Search PubMed.
  31. M. W. Ali, S. C. Zoltai and F. G. Radford, Can. J. Soil Sci, 1988, 443 Search PubMed.
  32. W. A. Glooschenko, J. A. Capobianco, T. Mayer and M. Gregory, Proceedings of the 6th International Peat Congress, Minnesota, USA, International Peat Society, 1979, 551–555 Search PubMed.
  33. A. K. Cheburkin, A. V. Andreyev and V. V. Demyanenko, Geol. Geofiz., 1988, 8, 47 Search PubMed.
  34. A. K. Cheburkin, R. Frei and W. Shotyk, Chem. Geol., 1997, 135, 75 CrossRef CAS.
  35. W. Shotyk, A. K. Cheburkin and A. V. Andreyev, in Proceedings of the 9th International Conference on Heavy Metals in the Environment, Toronto, Canada, CEP Consultants, Edinburgh, UK, 1993, 1, 175–179 Search PubMed.
  36. W. Shotyk, Chem. Geol., 1997, 138, 55 CrossRef CAS.
  37. K. Govindaraju, Geostand. Newsl., 1989, 13, 1.
  38. R. M. Rousseau, J. P. Willis and A. R. Duncan, X-ray Spectrom., 1996, 25, 179 CAS.
  39. D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman and Company, New York, USA, 2nd edn., 1992 Search PubMed.
  40. D. Weiss, PhD Thesis, University of Bern, Switzerland, 1998.
  41. W. A. Glooschenko, in Toxic metals in the Atmosphere, ed. J. O. Nriagu and D. I. Davidson, John Wiley and Sons, New York, USA, 1986, pp. 57–64 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.