The characterisation of polyether ionophore veterinary drugs by HPLC-electrospray MS†

(Note: The full text of this document is currently only available in the PDF Version )

James A. Harris, Charlotte A. L. Russell and John P. G. Wilkins


Abstract

We undertake the determination of a wide range of veterinary drug residues in a range of animal products. Various screening analyses are employed, followed by HPLC-API (atmospheric pressure ionisation)-MS for the unequivocal confirmation of significant positives. EU legislation for the use of GC-MS as a confirmatory technique requires the successful monitoring of at least four diagnostic ions and although no such requirement exists for HPLC-MS confirmation, a similar requirement would seem appropriate. Until recently, reports describing the electrospray MS confirmation of residues of the polyether ionophores have been based on monitoring one or two ions. We have found that the addition of ammonium acetate to the HPLC mobile phase, in conjunction with ‘cone voltage’ or ‘skimmer’ assisted fragmentation, is a convenient way of producing additional diagnostic ions from polyether ionophore compounds, without compromising the overall sensitivity. Results for lasalocid, the most widely used compound, are presented. Electrospray MS data and acquisition parameters for lasalocid, monensin, narasin and salinomycin are described. The advantage of this analytical approach is that it may be used to generate confirmatory data using a single quadrupole MS system, without the need for advanced MS instrumentation, e.g., MS-MS.


References

  1. D. Brown, Daily Telegraph, 18 February 1997 Search PubMed.
  2. Animal health, productivity and nutrition market: leading branded products by sales, Vivash-Jones International Ltd., Cirencester, UK, personal communication Search PubMed.
  3. M. N. Norvilla, Vet. Hum. Toxicol., 1992, 34(1), 66 Search PubMed.
  4. P. Van der Kop and J. MacNeil, J. Chromatogr., 1990, 508, 386 CrossRef.
  5. P. J. Owls, Analyst, 1984, 109, 1331 RSC.
  6. D. G. Kennedy, W. J. Blanchflower and C. O'Dornan, Food Addit. Contam., 1995, 12, 83 CAS.
  7. H. Asukabe, H. Murata, K. Harada, M. Suzuki, H. Oka and Y. J. Ikai, J. Agric. Food Chem., 1994, 42, 112 CrossRef.
  8. G. Weiss, N. R. Felicito, M. Kaykaty, G. Chen, A. Caruso, E. Hargroves, C. Crowley and A. MacDonald, J. Agric. Food Chem., 1983, 31, 78 CrossRef CAS.
  9. G. Gerhardt, C. D. C. Salisbury and H. M. Cambell, Food Addit. Contam., 1995, 12, 731 CAS.
  10. G. Weiss and A. MacDonald, J. Assoc. Off. Anal. Chem., 1985, 68(5), 971 Search PubMed.
  11. W. J. Blanchflower and D. G. Kennedy, J. Chromatogr., 1996, 675, 225 CrossRef CAS.
  12. Eur. Commission Decision, 93/256/EEC, 1993, Offic. J. Eur. Commun. No. L118/64.
  13. W. J. Blanchflower and D. G. Kennedy, Analyst, 1995, 120, 1129 RSC.
  14. R. Schneider, M. J. Lynch, J. J. Ericson and G. F. Hassan, Anal. Chem., 1991, 63, 1789 CrossRef CAS.
  15. D. Volmer and C. Lock, Rapid Commun. Mass Spectrom., 1998, 12, 157 CrossRef CAS.
  16. Annual Report on Surveillance for Veterinary Residues in 1996, UK Veterinary Medicines Directorate Addlestone, UK Search PubMed.
  17. J. A. Harris and J. P. G. Wilkins, unpublished work.
  18. W. J. Blanchflower, S. A. Hewitt and D. G. Kennedy, Analyst, 1994, 119, 2595 RSC.
  19. A. K. Mallams, in Encyclopedia of Chemical Technology, ed. M. Grayson, Wiley, New York, 1978, 3, pp. 47–63 Search PubMed.
  20. A. A. Paul and D. A. T. Southgate, Composition of Foods, HMSO, London, UK, 4th edn., 1978, p. 107 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.