Monitoring ethanol production during wine fermentation processes by a pervaporation–enzymic derivatisation approach

(Note: The full text of this document is currently only available in the PDF Version )

F. Delgado-Reyes, I. Papaefstathiou, J. M. Fernández Romero and M. D. Luque de Castro


Abstract

A new procedure for on-line monitoring of ethanol production in the wine fermentation bioprocess is presented. The method combines the use of a pervaporation unit inserted in a continuous flow system with the use of enzymic derivatisation and fluorimetric detection as a way of improving both selectivity and sensitivity. The derivatisation reaction was based on a two-step reaction involving alcohol oxidase (AOD) and horseradish peroxidase (POD) with fluorimetric detection at λex = 310 nm and λem = 415 nm of the dimer formed. The efficiency of the derivatisation reaction was tested using different flow injection approaches with either solution phase or immobilised biocatalysts (in normal or stopped-flow modes in both cases). Finally, the approach based on the stopped-flow mode and AOD/POD immobilisation was selected for application to the continuous monitoring of ethanol production in an experimental laboratory built bioreactor prepared using baker’s yeast as active cells. The method shows different linear ranges depending on the situation of the catalyst and the mode used, with excellent precision (RSD 3.0–5.5%) and a sampling frequency of 5 h–1. The use of this biosensing system was also tested by the standard addition method in the fermentation product with acceptable recoveries in all instances (90–105%). A fully automated approach to on-line bioprocess sample collection, dilution and monitoring of the fluorimetric product is also proposed.


References

  1. M. D. Luque de Castro and I. Papaefstathiou, Encyclopedia of Environmental Analysis and Remediation, Wiley, New York, ed. R. A. Meyer, Wiley, NY, 1998, pp. 3462–3475 Search PubMed.
  2. I. L. Mattos, M. D. Luque de Castro and M. Valcárcel, Talanta, 1995, 42, 755 CrossRef.
  3. I. L. Mattos and M. D. Luque de Castro, Anal. Chim. Acta, 1994, 298, 159 CrossRef CAS.
  4. D. Bryce, A. Izquierdo and M. D. Luque de Castro, Anal. Chim. Acta, 1996, 324, 69 CrossRef CAS.
  5. I. Papaefstathiou and M. D. Luque de Castro, Anal. Chem., 1995, 67, 3916 CrossRef CAS.
  6. I. Papaefstathiou, M. T. Tena and M. D. Luque de Castro, Anal. Chim. Acta, 1995, 308, 246 CrossRef CAS.
  7. I. Papaefstathiou, M. D. Luque de Castro and M. Valcárcel, Fresenius' J. Anal. Chem., 1996, 354, 442 CAS.
  8. I. Papaefstathiou and M. D. Luque de Castro, Anal. Lett., 1995, 28, 2063 CAS.
  9. T. D. Gibson and J. R. Woodward, Anal. Proc., 1986, 23, 360 Search PubMed.
  10. F. Lázaro, M. D. Luque de Castro and M. Valcárcel, Anal. Chem., 1987, 59, 1859 CrossRef CAS.
  11. W. Künnecke and R. D. Schmid, Anal. Chim. Acta, 1990, 234, 213 CrossRef.
  12. W. Künnecke and R. D. Schmid, J. Biotechnol., 1990, 14, 127 CrossRef CAS.
  13. K. Mitsubayashi, K. Yokoyama, T. Takeuchi and I. Karube, Anal. Chem., 1994, 66, 3297 CrossRef CAS.
  14. J. Mohns and W. Künnecke, Anal. Chim. Acta, 1995, 305, 241 CrossRef CAS.
  15. M. Dietrich and P. M. Krämer, Food Agric. Immunol., 1995, 7, 203 CAS.
  16. J. C. Mauricio, M. Pareja and J. M. W. Ortega, J. Microb. Biotechnol., 1995, 11, 196 Search PubMed.
  17. J. M. Izquierdo-Ferrero, J. M. Fernández Romero and M. D. Luque de Castro, Analyst, 1997, 122, 119 RSC.
  18. J. M. Reinj, W. E. van der Linden and H. Poppe, Anal. Chim. Acta, 1981, 123, 229–231 CrossRef.
  19. U. Prinzing, I. Ogbomo, C. Lehn and H. L. Schmidt, Sens. Actuators B, 1990, B1, 542 CrossRef.
  20. I. Ogbomo, A. Steffl, W. Schumann, U. Prinzing and H. L. Schmidt, J. Biotech., 1993, 31, 317 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.