pH-induced destabilization of lipid bilayers by a peptide from the VP3 protein of the capsid of hepatitis A virus†

(Note: The full text of this document is currently only available in the PDF Version )

Abelardo Chávez, María A. Busquets, Monserrat Pujol, M. Asunción Alsina and Yolanda Cajal


Abstract

The membrane destabilizing and fusogenic properties of the synthetic peptide VP3(110–121), corresponding to an immunogenic sequence of the hepatitis A virus (HAV) VP3 capsid protein, were studied. By tryptophan fluorescence and acryalmide quenching it was demonstrated that the peptide binds liposomes of POPC–SM–DPPE (47 + 39 + 14) and POPC–SM–DPPE–DOTAP (40 + 33 + 12 + 15) and penetrates the membrane, at both neutral and acidic pH (POPC = 1-palmitoyl-2-oleoylglycero-sn-3-phosphocholine; SM = sphingomyelin; DPPE = 1,2-dipalmitoylphosphatidylethanolamine; DOTAP = 1,2-dioleoyl-3-trimethylammoniumpropane). VP3(110–121) did not have membrane-destabilizing properties at neutral pH. Acid-induced destabilization of the vesicles was demonstrated by fluorescence techniques and dynamic light scattering. VP3(110–121) induced aggregation of POPC–SM–DPPE–DOTAP (40 + 33 + 12 + 15) vesicles, lipid mixing and leakage of vesicle contents, all consistent with fusion of vesicles. In POPC–SM–DPPE (47 + 39 + 14) vesicles, at acidic pH, VP3(110–121) induced membrane destabilization with leakage of contents but without aggregation of vesicles or lipid mixing. The peptide only showed fusogenic properties when bound to the vesicles at neutral pH before acidification to pH below 6.0, and no effect was seen if the peptide was added to vesicles already set at acidic pH. These results may have physiological significance in the mechanism of infection of host hepatic cells by HAV.


References

  1. J. L. Nieva, S. Nir, A. Muga, F. M. Goñi and J. Wilscut, Biochemistry, 1994, 33, 3201 CrossRef CAS.
  2. J. M. White, Science, 1992, 258, 917 CAS.
  3. M. J. Clague, J. R. Knutson, R. Blumenthal and A. Hermann, Biochemistry, 1991, 30, 5491 CrossRef CAS.
  4. K. N. J. Burger, S. A. Wharton, R. A. Demel and A. J. Verkleij, Biochim. Biophys. Acta, 1991, 1065, 121 CAS.
  5. M. Murata, S. Takahashi, Y. Shirai, S. Kagiwada, R. Hishda and S. Ohnishi, Biophys. J., 1993, 64, 724 CAS.
  6. A. L. Bailey, M. A. Monck and P. R. Cullis, Biochim. Biophys. Acta, 1997, 1324, 232 CrossRef CAS.
  7. M. García, M. Pujol, F. Reig, M. A. Alsina and I. Haro, Analyst, 1996, 121, 1583 RSC.
  8. H. Ellens, J. Bentz and F. C. Szoka, Biochemistry, 1985, 24, 3099 CrossRef CAS.
  9. G. P. Kurzban, G. Gitlin, E. A. Bayer, M. Wilcheck and P. M. Horowitz, Biochemistry, 1989, 30, 8537 CrossRef.
  10. Y. Cajal, J. M. Boggs and M. K. Jain, Biochemistry, 1997, 36, 2566 CrossRef CAS.
  11. I. Haro, R. M. Pintó, J. F. Gonzalez-Dankaart, J. A. Pérez, F. Reig and A. Bosch, Microbiol. Immunol., 1995, 39, 845 Search PubMed.
  12. J. A. Levy, H. Fraenkel-Conrat and R. A. Owens, in Virology, Prentice Hall, Englewood Cliffs, NJ, 3rd edn., 1994, ch. 11, pp. 271-292 Search PubMed.
  13. R. T. Earl, I. M. Hunneyball, E. E. Bilelett and R. J. Mayer, J. Pharm. Pharmacol., 1988, 40, 166 Search PubMed.
  14. S. Wei-Chiang and H. J.-P. Ryser, Proc. Natl. Acad. Sci. USA, 1978, 75, 1872.
  15. C. C. Pak, A. Puri and R. Blumenthal, Biochemistry, 1997, 36, 8890 CrossRef CAS.
  16. M. Roeder, R. Bowswe and R. F. Murphy, J. Cell. Physiol., 1987, 131, 200.
Click here to see how this site uses Cookies. View our privacy policy here.