Simultaneous determination of 11 polycyclic aromatic hydrocarbons (PAHs) by second-derivative synchronous spectrofluorimetry considering the possibility of quenching by some PAHs in the mixture

(Note: The full text of this document is currently only available in the PDF Version )

A. Andrade Eiroa, E. Vázquez Blanco, P. López Mahía, S. Muniategui Lorenzo and D. Prada Rodríguez


Abstract

A method capable of determining 11 PAHs (acenaphthene, anthracene, benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, phenanthrene, fluoranthene, indeno[1,2,3-cd]pyrene and perylene) in a mixture of 18 by second-derivative synchronous spectrofluorimetry in the constant wavelength mode was developed. It has not been possible to determine the following PAHs in the mixture: dibenz[a,h]anthracene, fluorene, indene, naphthalene, pyrene, triphenylene and 1,12-benzoperylene. The possibility of selective quenching of some molecules by others in the mixture was considered and it was found that the fluorescent signal of fluorene is quenched by indeno[1,2,3-cd]pyrene. Other papers related to complex mixtures have not taken this possibility into account; on the other hand, the identification and quantification of PAHs in such a complex mixture (18 compounds) has never been attempted before. The approach studied allows the sensitive, rapid, easy and inexpensive identification and quantification of 11 PAHs in a solution of hexane. The detection limits are between 0.01 and 0.70 ng ml–1 in most cases (except for indeno[1,2,3-cd]pyrene with a detection limit of 4.95 ng ml–1) and a short analysis time (four PAHs were determined in one interval alone, Δλ = 95 nm), the total identification and quantification of the PAHs taking only 10 min.


References

  1. L. C. Sander, J. High Resolut. Chromatogr. Commun., 1988, 11, 383 Search PubMed.
  2. M. T. Oms, R. Forteza, V. Cerdá, F. García and A. L. Ramos, Int. J. Environ. Anal. Chem., 1990, 42, 1 CAS.
  3. J. C. Means, S. G. Wood, J. J. Hasset and W. L. Banwart, Environ. Sci. Technol., 1980, 14, 1524 CAS.
  4. N. T. Edwards, J. Environ. Qual., 1983, 12, 427 CAS.
  5. S. O. Baek, R. A. Field, M. E. Goldstone, P. W. Kirk, J. N. Lester and R. Perry, Water Air Soil Pollut., 1991, 60, 279 CrossRef CAS.
  6. C. A. Menzie, B. B. Potocki and J. Santodonato, Environ. Sci. Technol., 1992, 26, 1278 CAS.
  7. G. Kiss, Z. Varga-Puchony and J. Hlavay, J. Chromatogr. A, 1996, 725, 261 CrossRef CAS.
  8. D. Domine, J. Devillers, P. Garrigues, H. Budzinski, M. Chastrette and W. Karcher, Sci. Total Environ., 1994, 155, 9 CrossRef CAS.
  9. A. A. Herod and R. G. James, J. Inst. Fuel, 1978, 51, 164 Search PubMed.
  10. S. A. Wise, L. C. Sander and W. E. May, J. Chromatogr., 1993, 642, 329 CrossRef CAS.
  11. EPA Test Method, Polynuclear Aromatic Hydrocarbons–Method 610, US Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, 1982 Search PubMed.
  12. G. Castello and T. C. Gerbino, J. Chromatogr., 1993, 642, 351 CrossRef CAS.
  13. M. Salgado, C. Bosch, F. Sánchez Rojas and J. M. Cano Pavón, Quím. Anal., 1986, 5, 374 Search PubMed.
  14. J. B. F. Lloyd, Nature Phys. Sci., 1971, 231, 64 Search PubMed.
  15. D. J. Futoma, S. R. Smith and J. Tanaka, CRC Crit. Rev. Anal. Chem., 1982, 13, 117 Search PubMed.
  16. T. Vo-Dinh and P. R. Martínez, Anal. Chim. Acta, 1981, 215, 13 CrossRef CAS.
  17. Z.-H. Zhao and W.-Y. Quan, J. Environ. Sci. (China), 1989, 1, 109 Search PubMed.
  18. Ph. Baudot, M. L. Viriot, J. C. André, J. Y. Jezequel and M. Lafontaine, Analusis, 1991, 9, 85.
  19. J. J. Santana Rodríguez, Z. Sosa Ferrera, A. Afonso Perera and V. González Díaz, Talanta, 1992, 39, 1611 CrossRef.
  20. G. L. Green and T. C. O'Haver, Anal. Chem., 1974, 46, 2191 CrossRef CAS.
  21. P. John and I. Soutar, Anal. Chem., 1976, 48, 520 CrossRef CAS.
  22. J. B. F. Lloyd, Analyst, 1980, 105, 97 RSC.
  23. M. J. López de Alda, S. García-Falcón, M. A. Lage-Yusty and J. Simal-Lozano, J. Assoc. Off. Anal. Chem., 1995, 78, 495 Search PubMed.
  24. D. G. Konstantianos and P. C. Ioannou, Analyst, 1996, 121, 909 RSC.
  25. S. A. Momin and R. Narayanaswamy, Analyst, 1992, 117, 83 RSC.
  26. V. L. Amszi, I. Cordero, B. Smith, S. A. Tucker, W. E. Acree, Jr., C. Yang, E. Abu-Shaqara and R. G. Harey, Appl. Spectrosc., 1992, 46, 1156 CAS.
  27. S. A. Tucker, W. E. Acree, Jr., J. C. Fetzer, R. G. Garvey, M. J. Tanga, P. C. Cheng and L. T. Scott, Appl. Spectrosc., 1993, 47, 715 CAS.
  28. T. Vo-Dinh, R. B. Gammage, A. R. Hawthorne and J. H. Thorngate, Environ. Sci. Technology, 1978, 12, 1297 Search PubMed.
  29. E. L. Inman, Jr. and J. D. Winefordner, Anal. Chem., 1982, 54, 2018 CrossRef CAS.
  30. J. C. Andre, Ph. Baudot, M. Bouchy and M. Niclause, Anal. Chim. Acta, 1977, 92, 369 CrossRef CAS.
  31. C. L. Stevenson and T. Vo-Dinh, Appl. Spectrosc., 1993, 47, 430 CAS.
  32. D. Rendell, Fluorescence and Phosphorescence, Wiley, Chichester, 1987, pp. 105–110 Search PubMed.
  33. J. C. Miller and J. N. Miller, Statistics for Analytical Chemistry, Ellis Horwood, Chichester, 2nd edn., 1988, pp. 103–119 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.