Hole superexchange across a triazole bridged osmium monolayer/electrode interface†

(Note: The full text of this document is currently only available in the PDF Version )

Robert J. Forster, Johannes G. Vos and Tia E. Keyes


Abstract

The effects of electrolyte and temperature on the electrochemical response of spontaneously adsorbed monolayers of [Os(bpy)2bptCl], where bpy is 2,2′-bipyridyl and bpt is 3,5-bis(pyridin-4-yl)-1,2,4-triazole, on clean platinum microelectrodes are reported. While cyclic voltammetry of the Os2+/3+ redox reaction is nearly ideally reversible, the bipyridyl based reductions are reversible only for scan rates greater than approximately 5 V s–1, suggesting that the highly reduced species undergoes a subsequent chemical reaction. The electrolyte concentration dependence of the double layer capacitance, Cdl, was measured for monolayers containing only Os2+ centres at potentials on either side of the potential of zero charge, p.z.c. While the limiting interfacial capacitance observed at high electrolyte concentrations is approximately 25 µF cm–2 for potentials negative of the p.z.c., it decreases to only 12 µF cm–2 for potentials positive of the p.z.c. This observation suggests that at positive potentials the monolayers are relatively more perfect and contain less solvent and electrolyte ions. Oxidation of the monolayer to Os3+ causes Cdl to increase by less than 15%. These observations suggest that the physical location of charges within monolayers (bridge versus remote redox site) has a profound effect on the double layer structure. Chronoamperometry, conducted on a microsecond time-scale, was used to measure the heterogeneous electron transfer rate constant, k, for the Os2+/3+ redox reaction. For electrolyte concentrations above 0.1 M, redox switching is characterised by a single unimolecular rate constant (k/s–1). Tafel plots of the dependence of ln k on overpotential show that the rate constants for reduction of the Os3+ centres are approximately four times larger than those for oxidation of Os2+ sites within the monolayer for a wide range of overpotentials. This observation is interpreted in terms of a bridge mediated hole superexchange mechanism.


References

  1. K. A. Opperman, S. L. Mecklenburg and T. J. Meyer, Inorg. Chem., 1994, 33, 5295 CrossRef CAS.
  2. L. A. Kelly and M. A. J. Rodgers, J. Phys Chem., 1995, 99, 13 132 CrossRef CAS.
  3. R. Hage, J. G. Haasnoot, J. Reedijk and J. G. Vos, Chemtracts: Inorg. Chem., 1992, 4, 75 Search PubMed.
  4. S. Fanni, T. E. Keyes, J. G. Vos and S. Campagna, Inorg. Chem., 1998, in the press Search PubMed.
  5. R. W. Murray, Molecular Design of Electrode Surfaces, Wiley-Interscience, New York, 1992 Search PubMed.
  6. A. Ulman, An Introduction to Ultra-thin Organic Film From Langmuir-Blodgett to Self-Assembly, Academic Press, San Diego, 1991 Search PubMed.
  7. H. O. Finklea and D. D. Hanshew, J. Am. Chem. Soc., 1992, 114, 3173 CrossRef CAS.
  8. C. E. D. Chidsey, Science, 1991, 251, 919 CrossRef CAS.
  9. R. J. Forster, Chem. Soc. Rev., 1994, 289 RSC.
  10. J. F. Stoddart, in Frontiers in Supramolecular Organic Chemistry and Photochemistry, ed. H. J. Schneider and H. Dürr, VCH, Weinheim, 1990 Search PubMed.
  11. R. J. Forster and L. R. Faulkner, J. Am. Chem. Soc., 1994, 116, 5444 CrossRef CAS.
  12. J. J. Lingane, Electroanalytical Chemistry, Wiley, New York, 1958 Search PubMed.
  13. C. Xu, PhD Thesis, University of Illinois at Urbana-Champaign, 1992.
  14. S. Trasatti and O. A. Petrii, J. Electroanal. Chem., 1992, 327, 354 CrossRef.
  15. P. A. Lay, A. M. Sargeson and H. Taube, Inorg. Synth., ed. J. M. Shreeve, Wiley, 1986, vol. 24, p. 293 Search PubMed.
  16. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980 Search PubMed.
  17. B. P. Sullivan, D. Conrad and T. J. Meyer, Inorg. Chem., 1985, 24, 3640 CrossRef CAS.
  18. E. Laviron, J. Electroanal. Chem., 1974, 52, 395 CrossRef CAS.
  19. A. P. Brown and F. C. Anson, Anal. Chem., 1977, 49, 1589 CrossRef CAS.
  20. H. A. Goodwin, D. L. Kepert, J. M. Patrick, B. W. Skelton and A. H. White, Aust. J. Chem., 1984, 37, 1817 CAS.
  21. J. E. Ferguson, J. L. Love and W. T. Robinson, Inorg. Chem., 1972, 11, 1662 CrossRef.
  22. D. P. Rillema, D. S. Jones and H. A. Levy, J. Chem. Soc., Chem. Commun., 1979, 849 RSC.
  23. R. J. Forster and J. P. O'Kelly, J. Phys. Chem., 1996, 100, 3695 CrossRef CAS.
  24. R. J. Forster, Inorg. Chem., 1996, 35, 3394 CrossRef CAS.
  25. M. A. Bryant and R. M. Crooks, Langmuir, 1993, 9, 385 CrossRef CAS.
  26. R. M. Wightman and D. O. Wipf, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1989, vol. 15, p. 335 Search PubMed.
  27. C. A. Widrig, C. Chung and M. D. Porter, J. Electroanal. Chem., 1991, 310, 335 CrossRef CAS.
  28. R. G. Nuzzo and O. L. Allara, J. Am. Chem. Soc., 1983, 105, 4481 CrossRef CAS.
  29. R. J. Forster and L. R. Faulkner, J. Am. Chem. Soc., 1994, 116, 5453 CrossRef CAS.
  30. R. J. Forster and L. R. Faulkner, Anal. Chem., 1995, 67, 1232 CrossRef CAS.
  31. F. Barigelletti, L. De Cola, V. Balzani, R. Hage, J. G. Haasnoot, J. Reedijk and J. G. Vos, Inorg. Chem., 1989, 28, 4344 CrossRef CAS.
  32. F. Barigelletti, L. De Cola, V. Balzani, R. Hage, J. G. Haasnoot, J. Reedijk and J. G. Vos, Inorg. Chem., 1991, 30, 641 CrossRef CAS.
  33. E. L. Yee and M. J. Weaver, Inorg. Chem., 1980, 19, 1077 CrossRef CAS.
  34. T. T.-T. Li, K. L. Guyer, S. W. Barr and M. J. Weaver, J. Electroanal. Chem., 1984, 164, 27 CrossRef CAS.
  35. R. M. Noyes, J. Am. Chem. Soc., 1962, 84, 513 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.