The effect of hole acceptors on the photocurrent response of particulate TiO2 anodes†

(Note: The full text of this document is currently only available in the PDF Version )

J. Anthony Byrne, Brian R. Eggins, Patrick S. M. Dunlop and Sophie Linquette-Mailley


Abstract

The effect of different hole acceptors on the photocurrent response of particulate TiO2 anodes was investigated. In all cases there was a significant increase in the photocurrent over that observed for the photooxidation of water. The photocurrent efficiency observed in the presence of hole acceptors followed the order: oxalate > formate > acetate > methanol. The order of efficiency of the hole acceptors does not correlate with reported free hydroxyl radical reactivity constants or with reported oxidation potentials for the substrates studied. Adsorption measurements made in the dark showed that oxalate was much more strongly adsorbed on the electrode surface than either acetate or formate. Impedance spectroscopy indicated an increase in the capacitance of the system due to the presence of oxalate, both in the dark and under illumination.


References

  1. C. O'Driscoll, Chemistry in Britain, 1998, 34, 44 Search PubMed.
  2. A. Hagfeldt, N. Vlachopoulos and M. Grätzel, J. Electrochem. Soc., 1994, 141, L82 CAS.
  3. K. Vinogopal, S. Hotchandani and P. V. Kamat, J. Phys. Chem., 1993, 97, 9040 CrossRef CAS.
  4. D. H. Kim and M. A. Anderson, Environ. Sci. Technol., 1994, 28, 479 CAS.
  5. G. Hodes, I. D. J. Howell and L. M. Peter, J. Electrochem. Soc., 1992, 139, 3136 CAS.
  6. R. Cao, G. Oskan, G. J. Meyer and P. C. Searson, J. Phys. Chem., 1996, 100, 17021 CrossRef.
  7. H. Rensmo, H. Lindstrom, S. Sodergren, A. Willstedt, A. Solbrand, A. Hagfelt and S. Lindquist, J. Electrochem. Soc., 1996, 143, 3173 CAS.
  8. S. K. Poznyak, A. I. Kokorin and A. I. Kulak, J. Electroanal. Chem., 1998, 442, 99 CrossRef CAS.
  9. J. A. Byrne and B. R. Eggins, J. Electroanal. Chem., in the press Search PubMed.
  10. A. Whal, M. Ulmann, A. Carroy and J. Augustynski, J. Chem. Soc. Chem. Commun., 1994, 2277 RSC.
  11. J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney and M. Rouse, Appl. Catal. B: Environmental, 1998, 17, 25 CrossRef CAS.
  12. A. Hagfeldt, H. Lindstrom, S. Sodergren and S. E. Lindquist, J. Electronanal. Chem., 1995, 381, 39 Search PubMed.
  13. J. G. Calvert and J. N. Pitts, Photochemistry, John Wiley, 1973 Search PubMed.
  14. P. Salvador, J. Phys. Chem., 1985, 89, 3863 CrossRef CAS.
  15. J. Moser and M. Grätzel, J. Am. Chem. Soc., 1983, 105, 6547 CrossRef CAS.
  16. B. O'Regan, J. Moser, A. Anderson and M. Grätzel, J. Phys. Chem., 1990, 94, 8720 CrossRef CAS.
  17. A. Mills and S. Le Hunte, J. Photochem. Photobiol. A: Chem., 1997, 108, 1 CrossRef CAS.
  18. A. Hagfeldt, U. Bjorksten and M. Grätzel, J. Phys. Chem., 1996, 100, 8045 CrossRef CAS.
  19. Degussa Technical Bulletin No. 72, Revised reprint from Chem. Ing. Techn., 1980, 52, 628 Search PubMed.
  20. J. S. Curran and D. Mamouche, J. Phys. Chem., 1983, 87, 5405 CrossRef CAS.
  21. S. Sodergren, A. Hagfeldt, J. Olsson and S. Lindquist, J. Phys. Chem., 1994, 98, 5552 CrossRef.
  22. T. Freund and W. P. Gomes, Catal. Rev., 1969, 3, 1 Search PubMed.
  23. D. J. Fermin, E. A. Ponomarev and L. M. Peter, Proc. Electrochem. Soc., 1997, 97–20, 61 Search PubMed.
  24. J. R. Harbour and M. L. Hair, J. Phys. Chem., 1979, 83, 652 CrossRef CAS.
  25. B. Krauetler and A. J. Bard, J. Am. Chem. Soc., 1978, 100, 5985 CrossRef.
  26. D. Lawless and N. Serpone, J. Phys. Chem., 1991, 95, 5166 CrossRef CAS.
  27. A. J. Hoffman, E. R. Carraway and M. R. Hoffman, Environ. Sci. Technol., 1994, 28, 776.
  28. V. S. Bagotzky and Y. B. Vasilyev, Electrochim. Acta, 1964, 9, 869 CrossRef.
  29. W. B. Mather and F. C. Anson, Anal. Chem., 1961, 33, 1634 CrossRef CAS.
  30. N. K. V. Leitner and M. Dore, J. Photochem. Photobiol. A: Chem., 1996, 99, 137 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.