Reaction/diffusion with Michaelis–Menten kinetics in electroactive polymer filmsPart 2.‡ The transient amperometric response†

(Note: The full text of this document is currently only available in the PDF Version )

Michael E. G. Lyons, Thomas Bannon, Gareth Hinds and Serge Rebouillat


Abstract

A theoretical model describing the transient response of an amperometric chemical sensor in which the sensing elements bound in a surface deposited polymer film interact with the substrate via Michaelis–Menten reaction kinetics is outlined. A non-linear time dependent partial differential equation is formulated and solved analytically. In particular the interplay between chemical reaction and substrate diffusion is specifically taken into account. The limiting situations of catalytic site unsaturation and site saturation are considered and analytical solutions for substrate concentration and transient current response are formulated using both the methods of Laplace transformation and finite integral transformation. Both protocols yield similar predictions. The current response predicted under steady state conditions when τ → ∞ is in good accord with that presented in an earlier paper, thus confirming the validity of the mathematical analysis. The time taken to achieve a steady state current response (the sensor response time when operating in the batch amperometric mode ) was found to depend on the balance between substrate diffusion through the polymer matrix and substrate reaction at the immobilised catalytic sites within the polymer film.


References

  1. (a) A. R. Hillman, in Electrochemical Science and Technology of Polymers, ed. R. G. Linford, Elsevier, Amsterdam, 1987, pp.103–291 Search PubMed; (b) Molecular Design of Electrode Surfaces, ed. R. W. Murray, Techniques of Chemistry Series, vol. XXII, Wiley-Interscience, New York, 1992 Search PubMed; (c) Biosensors and Chemical Sensors, Optimizing Performance Through Polymeric Materials, ed. P. G. Eldeman and J. Wang, ACS Symposium Series, No. 487, American Chemical Society, Washington, DC, 1992 Search PubMed.
  2. M. E. G. Lyons, in Electroactive Polymer Electrochemistry: Part I, Fundamentals, ed. M. E. G. Lyons, Plenum Press, New York, 1994, pp. 1-235 Search PubMed.
  3. (a) M. E. G. Lyons, Analyst, 1994, 119, 805 RSC; (b) S. A. Wring and J. P. Hart, Analyst, 1992, 117, 1215 RSC.
  4. M. E. G. Lyons, Adv. Chem. Phys., 1996, 94, 297 CAS.
  5. W. J. Albery and A. R. Hillman, J. Electroanal. Chem., 1984, 170, 27 CrossRef CAS.
  6. C. P. Andrieux and J. M. Saveant, in Molecular Design of Electrode Surfaces, Techniques of Chemistry Series, ed. R. W. Murray, Wiley-Interscience, New York, 1992, vol. XXII, pp. 207–270 Search PubMed.
  7. M. E. G. Lyons, in Electroactive Polymer Electrochemistry: Part I, Fundamentals, ed. M. E. G. Lyons, Plenum Press, New York, 1994, pp. 237–374 Search PubMed.
  8. (a) P. N. Bartlett, P. R. Birkin and E. K. N. Wallace, J. Chem. Soc., Faraday Trans., 1997, 93, 1951 RSC; (b) P. N. Bartlett, P. Tebbutt and R. G. Whitaker, Prog. React. Kin., 1991, 16, 55 Search PubMed.
  9. (a) M. E. G. Lyons, P. N. Bartlett, C. H. Lyons, W. Breen and J. F. Cassidy, J. Electroanal. Chem., 1991, 304, 1 CrossRef CAS; (b) M. E. G. Lyons, C. H. Lyons, C. A. Fitzgerald and P. N. Bartlett, J. Electroanal. Chem., 1994, 365, 29 CrossRef CAS.
  10. M. E. G. Lyons, C. H. Lyons, A. Michas and P. N. Bartlett, Analyst, 1992, 117, 1271 RSC.
  11. M. E. G. Lyons, C. A. Fitzgerald and M. R. Smyth, Analyst, 1994, 119, 855 RSC.
  12. M. E. G. Lyons, J. C. Greer, C. A. Fitzgerald, T. Bannon and P. N. Bartlett, Analyst, 1996, 121, 715 RSC.
  13. W. J. Albery, A. E. G. Cass and Z. X. Shu, Biosens. Bioelectron., 1990, 5, 367 CrossRef CAS.
  14. M. R. Spiegel, Laplace Transforms, McGraw-Hill, New York, 1965 Search PubMed.
  15. A. V. Luikov, Analytical Heat Diffusion Theory, Academic Press, New York, 1968 Search PubMed.
  16. M. R. Spiegel, Laplace Transforms, McGraw-Hill, New York, 1965, p.46 Search PubMed.
  17. J. Spanier and K. B. Oldham, An Atlas of Functions, Hemisphere, Washington, DC, USA, 1987, p. 385 Search PubMed.
  18. I. H. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972 Search PubMed.
  19. P. R. Johnston and D. D. Do, Chem. Eng. Commun., 1987, 60, 343 Search PubMed.
  20. D. D. Do and J. E. Bailey, Chem. Eng. Sci., 1981, 36, 1811 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.