Rapid titrimetric determination of free acidity in process samples of uranyl nitrate

(Note: The full text of this document is currently only available in the PDF Version )

Uma Sundar and P. C. Sivadasan


Abstract

A simple titrimetric method for the rapid determination of free nitric acid associated with process stream samples of uranyl nitrate is described. The hydrolysable ions present in the samples are protected from interference by complexing them with sodium fluoride or potassium oxalate. Sodium hydroxide is used as the titrant for the free acid. A mixed indicator of Bromothymol Blue and Neutral Red with a transformation point at pH 7.2 is used for the detection of the end-point when sodium fluoride is the complexant. Another mixed indicator of Methyl Red and Methylene Blue with a transformation point at pH 5.4 is used when potassium oxalate is used as the complexant. A precision of 0.02 mol l–1 is attainable in both cases. The results obtained compared well with those obtained using potassium hexacyanoferrate(II) as the complexant. For samples containing larger amounts of soluble silica, potassium oxalate is preferred over sodium fluoride as the latter reacts with silica, releasing hydroxyl ions and leading to lower values of free acidity. Also, potassium oxalate is superior to sodium fluoride as it generates no corrosive analytical waste.


References

  1. T. Sato, J. Inorg. Nucl. Chem., 1959, 9, 188 CrossRef CAS.
  2. C. D. Harrington and A. E. Reuhle, Uranium Production Technology, Van Nostrand, New York, 1959, p. 153 Search PubMed.
  3. G. L. Booman, M. C. Elliot, R. B. Kimball, F. O. Carton and J. E. Rein, Technical Report, IDO-14316, Phillips Petroleum, Idaho Falls, ID, 1955 Search PubMed.
  4. R. A. Schueider and M. J. Rasmussen, HW-53368, Hanford, Washington DC, 1959 Search PubMed.
  5. J. H. Sikes and J. E. Rein, Technical Report, IDO-14316, Suppl. 3, Phillips Petroleum, Idaho Falls, ID, 1957 Search PubMed.
  6. J. A. Ryan, J. R. Sanderson and D. Winsor, Technical Report, SCS-R-378, ADRC/P89, UK Atomic Energy Authority, Warrington, Lancs., 1959 Search PubMed.
  7. K. Motojima and K. Izawa, Anal. Chem., 1964, 36, 733 CrossRef CAS.
  8. J. L. Pflung and F. J. Miner, Anal. Chim. Acta, 1960, 23, 362 CrossRef.
  9. D. J. Savage, Proc. Soc. Anal. Chem., 1974, 11, 266 RSC.
  10. D. Scargill, M. J. Waterman, A. S. Kuruez and T. E. Hitton, Report AERE-M 3823, Atomic Energy Research Establishment, Harwell, Oxon, 1984 Search PubMed.
  11. N. Damien and P. Cauchetier, Anal. Chim. Acta, 1968, 41, 483 CrossRef CAS.
  12. P. C. Mayankutty, S. Ravi and M. N. Nadkarni, J. Radioanal. Chem., 1982, 68, 145 CAS.
  13. Analytical Chemistry of the Manhattan Project, NNES VIII-1, New York, 1950, p. 214 Search PubMed.
  14. E. W. Baumann and B. H. Torrey, Anal. Chem., 1984, 56, 682 CAS.
  15. S. Arhland, Acta Chem. Scand., 1960, 14, 2035.
  16. A. K. Ahmed, D. S. Suryanarayana, K. N. Sabharwal and N. L. Srinivasan, Anal. Chem., 1985, 57, 2358 CrossRef.
  17. M. J. Shepherd, Jr. and J. E. Rein, Technical Report, IDO-14136, 1955 Search PubMed.
  18. Treatise on Analytical Chemistry, Part II, ed. Kolthoff, P. J., Wiley, New York, vol. 9 Search PubMed.
  19. A. Umamaheswari, B. Narasimha Murty, R. B. Yadav and S. Syamsunder, Analyst, 1995, 120, 1099 RSC.
  20. I. I. Chernyaev, Complex Compounds of Uranium, translated from Russian by Mandel, L., , Israel Program for Scientific Publications, Jerusalem, 1966, p. 120 Search PubMed.