Near-infrared mass median particle size determination of lactose monohydrate, evaluating several chemometric approaches

(Note: The full text of this document is currently only available in the PDF Version )

P. Frake, C. N. Luscombe, D. R. Rudd, I. Gill, J. Waterhouse, P. Frake and U. A. Jayasooriya


Abstract

The influence of particle size on near-infra red (NIR) spectra is typically considered a ‘nuisance factor’ which many scatter correction methods attempt to eliminate, e.g., multiplicative scatter correction. However, particle size is a key issue in the formulation of many pharmaceutical products and has a profound effect on the behaviour of both raw materials and drug substances during formulation. NIR has already been demonstrated as a potential alternative particle sizing technique to current accepted methodology. This investigation assessed several chemometric approaches that model this information, using lactose monohydrate as the raw material. A variety of modelling techniques were applied to both zero order and second derivative spectra namely multiple linear regression, partial least squares, principal component regression and artificial neural networks. One further data transformation evaluated was polar coordinates, although no statistical data were generated. Typically, cross-validation root mean square errors of calibration and cross-validation root mean square errors of prediction of approximately 5 µm were calculated for all of the modelling techniques. These values are comparable to those associated with the reference technique (laser diffractometry). Correlation coefficients of approximately 0.98 for all techniques were also calculated. The predictive abilities for models generated using second derivative spectra were found to be comparable to those obtained using zero order spectra.


References

  1. E. W. Ciurczak, Appl. Spectrosc. Rev., 1987, 23(1/2), 147 Search PubMed.
  2. J. J. Drennen and R. A. Lodder, J. Pharm. Sci., 1990, 79(7), 622 CAS.
  3. E. W. Ciurczak, Pract. Spectrosc., 1992, 13, 549 Search PubMed.
  4. E. W. Ciurczak, Chemtech., 1992, 22(61), 374 CAS.
  5. E. W. Ciurczak and J. K. Drennen, Spectrosc., 1992, 7(6), 12 Search PubMed.
  6. W. Plugge and C. Van der Vlies, J. Pharm. Biomed. Anal., 1993, 11(6), 435 CrossRef CAS.
  7. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch and C. De La Pezuela, Talanta, 1993, 40(11), 1671 CrossRef CAS.
  8. E. W. Ciurczak, R. P. Torlini and M. P. Demkowicz, Spectrosc., 1986, 1(7), 36 Search PubMed.
  9. J. L. Ilari, H. Martens and T. Isaksson, Appl. Spectrosc., 1988, 42(5), 722 CAS.
  10. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, F. Gonzalez and R. Pous, Near Infra-red Spectroscopy (Bridging the Gap Between Data Analysis and NIR Applications), ed. K. I. Hildrum, T. Isaksson, T. Naes and A. Tandberg, Ellis Horwood, Chichester, 1992, pp. 401–406 Search PubMed.
  11. A. J. O'Neil, R. D. Lee, R. A. Watt and A. C. Moffat, J. Pharmacy Pharmacol., 1997, 49(4), 19 Search PubMed.
  12. L. S. Aucott, P. H. Garthwaite and S. T. Buckland, Analyst, 1988, 113, 1849 RSC.
  13. C. R. Bull, Analyst, 1991, 116, 781 RSC.
  14. B. G. Osborne, T. Fearn and P. H. Hindle, Practical NIR Spectroscopy, with Application in Food and Beverage Analysis, Longman Scientific, Harlow, 2nd edn., 1993 Search PubMed.
  15. R. DiFoggio, Appl. Spectrosc., 1995, 49(1), 67 CAS.
  16. P. Frake, D. Greenhalgh, S. M. Grierson, J. M. Hempenstall and D. R. Rudd, Int. J. Pharm., 1997, 151, 75 CrossRef CAS.
  17. H. Martens and T. Naes, Multivariate Calibration, Wiley, Chichester, 1989 Search PubMed.
  18. M. A. Sharaf, D. L. Illman and B. R. Kowalski, Chemometrics, Wiley, Chichester, 1986 Search PubMed.
  19. J. R. Long, V. G. Gregoriou and P. G. Gemperline, Anal Chem., 1990, 62, 1791 CrossRef.
  20. C. Van der Vlies, K. J. Kaffka and W. Plugge, Pharm. Tech., 1995, 7(4), 43 Search PubMed.
  21. C. Van der Vlies, Eur. Pharm. Rev., (February), 1996 Search PubMed.